精英家教网 > 初中数学 > 题目详情

【题目】如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着圆环水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O的位置且与地面垂直.

1)若草坪的面积与圆环水池的面积之比为14,求两个同心圆的半径之比.

2)如图,若水池外面通往草坪有一座10米长的小桥BC,小桥所在的直线经过圆心O,上午8:00时太阳光线与地面成30°角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45°角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA.

【答案】(1);(2)旗杆的高OA长为()米.

【解析】

1)根据面积比与半径比的关系求解即;

2)设OA=x,根据解直角三角形表示出OBOC,根据其数量关系列方程解答即可.

1)由题意得

即两个同心圆的半径之比为.

2)设OA=x,由∠ABO=45°,∠ACO=30°知,

∵,OC-OB=BC=10

,解得.

∴旗杆的高OA长为()米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接

1)在图中,补全图形,并证明 .

2)连接,若与⊙相切,则的度数为 . 

3)连接,则的最小值为 的最大值为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在水平面E处,测得某建筑物AB的顶端A的仰角为42°,向正前方向走37米到达点D处,再往斜坡CD上走30米到达点C处,测得建筑物AB的顶端A的仰角为63.5°,已知斜坡CD的坡度为i10.75,建筑物AB垂直于平台BC,平台BC与水平面DE平行,点ABCDE均在同一平面内,则建筑物AB的高度约为(  )(精确到0.1米,参考数据:sin42°≈0.67cos42°≈0.74tan42°≈0.90sin63.5°≈0.90cos63.5°≈0.45tan63.5°≈2.0

A.42.4B.46.4C.48.5D.50.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,都是等腰直角三角形,的顶点的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,射线与线段相交于点,与射线相交于点.

1)求证:

2)求证:平分

3)当,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两名同学做摸球游戏,他们把三个分别标有123的大小和形状完全相同的小球放在一个不透明的口袋中.

1)求从袋中随机摸出一球,标号是1的概率;

2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程左右两边同时加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(﹣30)和B10)两点,交y轴于点C03),点CD是二次函数图象上的一对对称点,一次函数的图象过点BD,交y轴为E

1)求二次函数的解析式;

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.

1)请用列表或画树状图的方法表示出上述试验所有可能结果;

2)求一次打开锁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某球室有三种品牌的个乒乓球,价格是789(单位:元)三种.从中随机拿出一个球,已知(一次拿到元球)

1)求这个球价格的众数;

2)若甲组已拿走一个元球训练,乙组准备从剩余个球中随机拿一个训练.

所剩的个球价格的中位数与原来个球价格的中位数是否相同?并简要说明理由;

乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

同步练习册答案