【题目】如图,正方形ABCD的边长为6,点E,F分别为AB、BC的中点,点H是AD边上一点,将△DCF沿DF折叠得△DC′F,将△AEH沿EH折叠后点A的对应点A′刚好落在DC′上,则cos∠DA′H=______.
【答案】.
【解析】
延长DC'交AB于K,连接FK,分别过H,E作DK的垂线,垂足分别为M,N,利用正方形的性质及轴对称的性质,先证Rt△FBK≌Rt△FC'K,推出BK=C'K,在Rt△ADK中,利用勾股定理求出BK,C'K的长,进一步求出EK的长,在Rt△KEN与Rt△KAD中,利用三角函数求出EN的长,在Rt△EA'N中,求出cos∠A'EN的值,证∠DA'H与∠A'EN相等即可.
解:如图,延长DC'交AB于K,连接FK,分别过H,E作DK的垂线,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠A=∠∠B=∠C=90°,AB=BC=6,
∵E,F分别为AB,BC的中点,
∴AE=BE=BF=FC=×6=3,
由翻折知,△DCF≌△DC'F,△AEH≌△A'EH,
∴∠FC'D=∠C=90°,∠A=∠HA'E=90°,AE=A'E=3,C'F=CF=BF=3,DC'=DC=6,
∴∠B=∠FC'K=90°,
又∵KF=KF,
∴Rt△FBK≌Rt△FC'K(HL),
∴KB=KC',
设KB=KC'=x,
在Rt△ADK中,AD=6,AK=6-x,DK=6+x,
∵DK2=AD2+AK2,
∴(6+x)2=62+(6-x)2,
解得:x=,
∴BK=C'K=,
∴DK=DC'+KC'=6+=,EK=BE-BK=,
在Rt△KNE与Rt△KAD中,
sin∠EKN=,
即,
解得,EN=,
∵∠DA'H+∠EA'N=90°,∠EA'N+∠NEA'=90°,
∴∠HA'D=∠NEA',
在Rt△EA'N中,cos∠A'EN===,
即cos∠DA'H=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;
(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t>0),△BPQ的面积为S(cm2).
(1)t=2秒时,则点P到AB的距离是 cm,S= cm2;
(2)t为何值时,PQ⊥AB;
(3)t为何值时,△BPQ是以BP为底边的等腰三角形;
(4)求S与t之间的函数关系式,并求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=x2-2mx-3m
(1)当m=1时,
①抛物线的对称轴为直线______,
②抛物线上一点P到x轴的距离为4,求点P的坐标
③当n≤x≤时,函数值y的取值范围是-≤y≤2-n,求n的值
(2)设抛物线y=x2-2mx-3m在2m-1≤x≤2m+1上最低点的纵坐标为y0,直接写出y0与m之间的函数关系式及m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长. (参考数据:sin35°≈0.57,cos35°≈0.82, sin26°≈0.44,cos26°≈0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线过点,顶点为M点.
(1)求该抛物线的解析式;
(2)试判断抛物线上是否存在一点P,使∠POM=90.若不存在,说明理由;若存在,求出P点的坐标;
(3)试判断抛物线上是否存在一点K,使∠OMK=90,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:
实验次数n | 20 | 60 | 100 | 120 | 140 | 160 | 500 | 1000 | 2000 | 5000 |
“兵”字面朝上次数m | 14 | 38 | 52 | 66 | 78 | 88 | 280 | 550 | 1100 | 2750 |
“兵”字面朝上频率 |
下面有三个推断:投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是;随着实验次数的增加,“兵”字面朝上的频率总在附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是;当实验次数为200次时,“兵”字面朝上的频率一定是其中合理的是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB = AC,以AB为直径的⊙O 分 别交AC,BC于点 D,E,过点B作⊙O的切线, 交 AC的延长线于点F.
(1) 求证:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com