精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知直线ya与抛物线交于AB两点(AB的左侧),交y轴于点C

(1)若AB4,求a的值

(2)若抛物线上存在点D(不与AB重合),使,求a的取值范围

(3)如图2,直线ykx2与抛物线交于点EF,点P是抛物线上的动点,延长PEPF分别交直线y=-2MN两点,MNy轴于Q点,求QM·QN的值。

图1 图2

【答案】1;(2;(38

【解析】

1)将两个函数解析式联立,解一元二次方程求得AB的横坐标,进而表示出AB,即可解答;

2)由(1)可得CD=AB=,设D ,过点DDHy轴于点H,利用勾股定理可知,进而得到,得到,根据函数图象可知,即可求得a的取值范围;

3)设E),F),P),分别表示EPFP的解析式,当时,求得,联立ykx2,得到,利用一元二次方程根与系数的关系得到,代入即可解答.

1)联立

,解得:

2)由(1)知AB=

CD=AB=

D

过点DDHy轴于点H,则

3)设E),F),P

EP解析式为

PE代入可得:

时,可求

同理可求FP的解析式为

又联立得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有AB两地,甲、乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后,乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇。甲车出发的时间记为t (小时),两车之间的距离记为y(千米),yt的函数关系如图所示,则乙车第二次与甲车相遇时,甲车距离A___千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是一块边长为4米的正方形苗圃,园林部门将其改造为矩形的形状,其中点边上,点的延长线上, 的长为米,改造后苗圃的面积为平方米.

(1) 之间的函数关系式为 (不需写自变量的取值范围);

(2)根据改造方案,改造后的矩形苗圃的面积与原正方形苗圃的面积相等,请问此时的长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙与菱形在平面直角坐标系中,点的坐标为的坐标为,点的坐标为,点轴上,且点在点的右侧.

)求菱形的周长.

)若⊙沿轴向右以每秒个单位长度的速度平移,菱形沿轴向左以每秒个单位长度的速度平移,设菱形移动的时间为(秒),当⊙相切,且切点为的中点时,连接,求的值及的度数.

)在()的条件下,当点所在的直线的距离为时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB6,AC3,∠BAC60°,为⊙O上的一段弧,且∠BOC60°,分别在、线段ABAC上选取点PEF,则PEEFFP的最小值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;

(2)若OH⊥AC,OH=1,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;

(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售智能机器人,售价每台为10万元,进价y与销售量x的函数关系式如图所示。

(1)x=10时,公司销售机器人的总利润为___万元;

(2)10x30时,求出yx的函数关系式;

(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元。

查看答案和解析>>

同步练习册答案