【题目】已知函数(为常数)
(1)当,
①点在此函数图象上,求的值;
②求此函数的最大值.
(2)已知线段的两个端点坐标分别为,当此函数的图象与线段只有一个交点时,直接写出的取值范围.
(3)当此函数图象上有4个点到轴的距离等于4,求的取值范围.
【答案】(1)①②;(2),时,图象与线段只有一个交点;(3)函数图象上有4个点到轴的距离等于4时,或.
【解析】
(1)①将代入;②当时,当时有最大值为5;当时,当时有最大值为;故函数的最大值为;
(2)将点代入中,得到,所以时,图象与线段只有一个交点;将点)代入和中,得到,
所以时图象与线段只有一个交点;
(3)当时,,得到;当时,,得到,当时,,.
解:(1)当时,
,
①将代入,
∴;
②当时,当时有最大值为5;
当时,当时有最大值为;
∴函数的最大值为;
(2)将点代入中,
∴,
∴时,图象与线段只有一个交点;
将点代入中,
∴,
将点代入中,
∴,
∴时图象与线段只有一个交点;
综上所述:,时,图象与线段只有一个交点;
(3)当时,,
,∴;
当时,,
,∴,
当时,,
;
∴函数图象上有4个点到轴的距离等于4时,或.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;
(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.
(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为( )
A. 4cm B. 3cm C. 2cm D. 2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校对某班学生“五·一”小长假期间的度假情况进行调查,并根据收集的数据绘制了两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:
(1)求出该班学生的总人数.
(2)补全频数分布直方图.
(3)求出扇形统计图中∠α的度数.
(4)你更喜欢哪一种度假方式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.
(1)求证:BC是⊙O的切线;
(2)求证:DF=DG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到地,乙车立即以原速原路返回到地,甲、乙两车距地的路程与各自行驶的时间之间的关系如图所示.
⑴________,________;
⑵求乙车距地的路程关于的函数解析式,并写出自变量的取值范围;
⑶当甲车到达地时,求乙车距地的路程
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于第二、四象限内的点和点.过点作轴的垂线,垂足为点,的面积为4.
(1)分别求出和的值;
(2)结合图象直接写出的解集;
(3)在轴上取点,使取得最大值时,求出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com