精英家教网 > 初中数学 > 题目详情

【题目】如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE20mCE30m,点CDE在同一平面内,求AB两点之间的距离.(结果精确到1m,参考数据:1.73sin33°≈0.54cos33°≈0.84tan33°≈0.65

【答案】AB两点之间的距离为18m.

【解析】

DDFCEFDGACG,则四边形DGCF是矩形,根据矩形的性质得到CGDFDGCF,解直角三角形即可得到结论.

DDFCEFDGACG

则四边形DGCF是矩形,

CGDFDGCF

RtDFE中,∵∠DEF30°,DE20

DFDE10EFDE10

CGDF10DGCFCE+EF30+10

RtCEB中,∵∠BEC33°,CE30

BCCEtan33°=30×0.6519.5

BGBCCG9.5

RtADG中,∵∠ADG30°,DG30+10

AG27.5m

AB18m

答:AB两点之间的距离为18m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.

(1)求证:∠C=90°;

(2)当BC=3,sinA=时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,在平面直角坐标系中,已知抛物线x轴交于AB两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点AD的坐标分别为(-20),(6,-8).

1)求抛物线的函数表达式,并分别求出点B和点E的坐标;

2)试探究抛物线上是否存在点F,使,若存在,请直接写出点F的坐标;若不存在,请说明理由;

3)若点Py轴负半轴上的一个动点,设其坐标为(0m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南浔区某科技开发公司研制出一种新型的产品,每件产品的成本为1200元,销售单价定为1700元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按1700元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于1400元.

1)若顾客一次购买这种产品6件时,则公司所获得的利润为 元?

2)顾客一次性购买该产品至少多少件时,其销售单价为1400元;

3)经过市场调查,该公司的销售人员发现:当一次性购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.设一次性购买该产品x件,公司所获得的利润为y

①请你通过分析求出此时y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;

②为使顾客一次性购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为 元?(其它销售条件不变)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且点A1A3A5A7A9的坐标分别为A1 30),A3 10),A5 40),A7 0.0),A9 5.0),依据图形所反映的规律,则A102的坐标为(  )

A. 225B. 226C. ,﹣D. ,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校随机抽取九年级部分同学接受一次内容为最适合自己的考前减压方式的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:

九年级接受调查的同学共有多少名,并补全条形统计图;

九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;

若喜欢交流谈心5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由我国完全自主设计、自主建造的首艘国产航母于20185月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.

(参考数据:

查看答案和解析>>

同步练习册答案