精英家教网 > 初中数学 > 题目详情

【题目】已知:中,

如图1,若,且,求AD的长;

如图2,请利用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注

【答案】(1);(2)见解析.

【解析】

(1)根据DEBC,得出ADE∽△ABC,进而得到=,据此可得AD的长;

(2)作∠B的平分线BG,交ACG,作BG的垂直平分线MN,交ABF,则FG=FB,而FGBC,故FGAC,即点F到边AC的距离等于FB.

解:(1)在RtABC中,AC=8,BC=6,

AB=10,

DEAC,C=90°,

DEBC,

∴△ADE∽△ABC,

=

=

解得AD=

AD的长为;

(2)如图2所示,作∠B的平分线BG,交ACG,作BG的垂直平分线MN,交ABF,则点F即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列方程及其解的特征:

(1) 的解为(2)的解为

(3)的解为…………

解答下列问题:

(1)请猜想:方程的解为

(2)请猜想:关于的方程的解为(a≠0);

(3)下面以解方程为例,验证(1)中猜想结论的正确性.

解:原方程可化为.(下面请大家用配方法写出解此方程的详细过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点QCD边的中点,过点QAQPQBCP,(1)证明:△ADQ ∽△QCP;(2)PC=1,BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于受到手机更新换代的影响,某手机店经销的甲品牌手机四月份售价比三月份每台降价500元.如果卖出相同数量的甲品牌手机,那么三月份销售额为9万元,四月份销售额只有8万元.

1)四月份甲品牌手机每台售价为多少元?

2)为了提高利润,该店计划五月份购进甲品牌及乙品牌手机销售,已知甲每台进价为3500元,乙每台进价为4000元,预算用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,问按此预算要求,可以有几种进货方案,请写出所有进货方案?

3)该店计划五月在销售甲品牌手机时,在四月份售价基础上每售出一台甲品牌手机再返还顾客现金元,而乙品牌手机按销售价4400元销售,如要使(2)中所有方案获利相同,应取何值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

求证:方程有两个实数根;

的两边AB,AC的长是这个方程的两个实数根第三边BC的长为3,当是等腰三角形时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,菱形ABCD的边长为6,DAB=60°,点EAB的中点,连接AC、EC.点Q从点A出发,沿折线A—D—C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边PQF,PQFAEC重叠部分的面积为S,当点Q运动到点CP、Q同时停止运动,设运动的时间为t

(1)当等边PQF的边PQ恰好经过点D时,求运动时间t的值;当等边PQF的边QF恰好经过点E时,求运动时间t的值;

(2)在整个运动过程中,请求出St之间的函数关系式和相应的自变量t的取值范围;

(3)如图2,当点Q到达C点时,将等边PQF绕点P旋转α ° (0<α<360°),直线PF 分别与直线AC、直线CD交于点M、N.是否存在这样的α ,使CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是(  )

A. b=2,c=4 B. b=﹣2,c=﹣4 C. b=2,c=﹣4 D. b=﹣2,c=4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.

(1)求∠AFE的度数;

(3)求阴影部分的面积(结果保留π和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菜农李伟种植的某蔬菜计划以每千克元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克元的单价对外批发销售.

求平均每次下调的百分率;

小华准备到李伟处购买吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:

方案一:打九折销售;

方案二:不打折,每吨优惠现金元.

试问小华选择哪种方案更优惠,请说明理由.

查看答案和解析>>

同步练习册答案