【题目】如图,在△ABC中,5AB=6AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为 .
【答案】.
【解析】
试题分析:利用角平分线的性质,得到BD=CD,延长AC,构造一对全等三角形△ABD≌△AMD;过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;由MN∥AD,列出比例式,求出的值.
解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.
∵====,
∴BD=CD.
如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.
在△ABD与△AMD中,
∴△ABD≌△AMD(SAS),
∴MD=BD=CD.
过点M作MN∥AD,交EG于点N,交DE于点K.
∵MN∥AD,
∴==,
∴CK=CD,
∴KD=CD.
∴MD=KD,即△DMK为等腰三角形,
∴∠DMK=∠DKM.
由题意,易知△EDG为等腰三角形,且∠1=∠2;
∵MN∥AD,
∴∠3=∠4=∠1=∠2,
又∵∠DKM=∠3(对顶角)
∴∠DMK=∠4,
∴DM∥GN,
∴四边形DMNG为平行四边形,
∴MN=DG=2FD.
∵点H为AC中点,AC=5CM,
∴=.
∵MN∥AD,
∴=,即=,
∴=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,已知OABC是一个长方形,其中顶点A,B的坐标分别为(0,a)和(9,a),点E在AB上,且AE=AG,点F在OC上,且OF=OC,点G在OA上,且使△GEC的面积为20,△GFB的面积为16,试求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:
①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.
其中正确的结论是 .(只填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形AOCB在平面直角坐标系xoy中,点O为原点,点B在反比例函数(x>0)图象上,△BOC的面积为8.
(1)求反比例函数的关系
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F从B开始沿BC向C以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用S表示,求出S关于t的函数关系式?
(3)当运动时间为秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com