精英家教网 > 初中数学 > 题目详情

如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上)。请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m)。(参考数据:≈1.414,≈1.732)

 

 

这棵树CD的高度为8.7米

【解析】

试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

试题解析:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).

答:这棵树CD的高度为8.7米.

考点:1三角形外角的性质;2、解直角三角形的应用-仰角俯角问题

 

练习册系列答案
相关习题

科目:初中数学 来源:2014-2015山东省威海市环翠区七年级上学期期中考试数学试卷(解析版) 题型:解答题

如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,已知BE⊥AE,延长AE交BC的延长线于点F.

试说明:(1)FC=AD;(2)AB=BC+AD.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川凉山卷)数学(解析版) 题型:填空题

关于x的方程的解是正数,则a的取值范围是 .

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广东卷)数学(解析版) 题型:填空题

如图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE= ;

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广东卷)数学(解析版) 题型:解答题

如图,在△ABC中,AB=AC,AD⊥AB点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。

(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;

(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;

(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值,若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广东深圳卷)数学(解析版) 题型:解答题

关于体育选考项目统计图

项目

频数

频率

A

80

b

B

c

0.3

C

20

0.1

D

40

0.2

合计

a

1

 

(1)求出表中a,b,c的值,并将条形统计图补充完整.

表中a= ,b= ,c= .

(2)如果有3万人参加体育选考,会有多少人选择篮球?

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广东深圳卷)数学(解析版) 题型:选择题

如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西钦州卷)数学(解析版) 题型:选择题

如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )

A.x>2 B.x<﹣2

C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(海南卷)数学(解析版) 题型:选择题

5的相反数是( )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案