精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是(  )

A. 图象的对称轴是直线x=﹣1 B. x>﹣1时,yx的增大而减小

C. 当﹣3<x<1时,y<0 D. 一元二次方程ax2+bx+c=0的两个根是﹣3,1

【答案】B

【解析】

直接根据二次函数的性质对各选项进行逐一分析即可.

A选项:∵抛物线与x轴的交点分别为-3,1,∴图象的对称轴是直线x==-1,故本选项正确;
B选项:∵抛物线开口向上,对称轴是直线x=-1,∴当x<-1时,y随x的增大而减小,故本选项错误;
C选项:由函数图象可知,当-3<x<1时,y<0,故本选项正确;
D选项:∵抛物线与x轴的交点分别为-3,1,∴一元二次方程ax2+bx+c=0的两个根是-3,1,故本选项正确.
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在半径为10 cm圆中,两条平行弦分别长为12 cm16cm,则这两条平行弦之间的距离为( )

A. 28 cm4 cm B. 14cm2cm C. 13 cm4 cm D. 5 cm13cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是(  )

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分线BEAC的延长线于点E.

(1)求∠CBE的度数;

(2)过点DDFBE,交AC的延长线于点F,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市从 2018 1 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.

(1)求 A、B 两种型号电动自行车的进货单价;

(2)若 A 型电动自行车每辆售价为 2800 ,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y m 之间的函数关系式;

(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.

1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做规形图.请你观察规形图,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:

2)如图②,若ABC中,BO平分∠ABCCO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;

3)如图③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BOCO相交于点O,请直接写出∠BOC与∠A的关系式为    _

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现场学习题:

问题背景:

ABC中,ABBCAC三边的长分别为,求这个三角形的面积.

小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求ABC的高,而借用网格就能计算出它的面积.

1)请你将ABC的面积直接填写在横线上.

思维拓展:

2)我们把上述求ABC面积的方法叫做构图法,若ABC三边的长分别为a2aaa0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的ABC,并求出它的面积是:

探索创新:

3)若ABC三边的长分别为m0n0m≠n),请运用构图法在图3指定区域内画出示意图,并求出ABC的面积为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种品牌电脑,四月份营业额为万元.为扩大销售,在五月份将每台电脑按原价折销售,销售量比四月份增加台,营业额比四月份多了千元.

求四月份每台电脑的售价.

六月份该商店又推出一种团购促销活动,若购买不超过台,每台按原价销售:若超过台,超过的部分折销售,要想在六月份团购比五月份团购更合算,则至少要买多少台电脑?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,点的坐标为,点的坐标为.

1)求的面积;

2)如果要使全等,那么点的坐标是多少?

3)求的边上的高.

查看答案和解析>>

同步练习册答案