精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.

【答案】证明:∵△ABC和△ECD都是等腰直角三角形, ∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD,
∴∠ACE=∠BCD,
在△ACE和△BCD中,
∴△ACE≌△BCD(SAS),
∴BD=AE.
【解析】根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出∠ACE=∠BCD,然后利用“边角边”证明△ACE和△BCD全等,然后根据全等三角形对应边相等即可证明.
【考点精析】根据题目的已知条件,利用等腰直角三角形的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以 cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知代数式(ax3)(2x4)x2b化简后,不含x2项和常数项.

(1)ab的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置(  )

A. 3个球 B. 4个球

C. 5个球 D. 6个球

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.

X

50

60

90

120

y

40

38

32

26


(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中,一共调查了   名学生;

(2)补全条形统计图;

(3)若该校共有1500名学生,估计爱好运动的学生有   人;

(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OA平分EOC

(1)若EOC=70°,求BOD的度数;

(2)若EOCEOD=2:3,求BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是

查看答案和解析>>

同步练习册答案