分析 根据题意得出:△ABC是⊙O的内接等边三角形,过点O作OF⊥BC于点F,连接OBC,根据垂径定理可得出BF的长,故可得出OB的长.
解答
解:由题意可得:△ABC是⊙O的内接等边三角形,
如图所示:过点O作OF⊥BC于点F,连结OD,
∵△ABC是⊙O的内接等边三角形,AB=BC=2,
∴BF=$\frac{1}{2}$BC=1,∠OBC=30°,
∴OB=$\frac{BF}{cos30°}$=$\frac{1}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{3}}{3}$,
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查的是轴对称图形以及垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (4,0) | B. | (0,0) | C. | (2,2$\sqrt{3}$) | D. | (4,$\sqrt{3}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com