精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=( )

A. 36° B. 72°

C. 108° D. 120°

【答案】B

【解析】

∠DOE=x,根据题意得到∠BOE=2x∠AOC=∠COD=72°﹣x,再根据平角为180度,得到72°﹣x+3x=180°,解得x=36°,即可得到∠BOE的度数.

解:如图,设∠DOE=x

∵∠DOE=∠BOD

∴∠BOE=2x

∵OC∠AOD的平分线,∠COE=72°

∴∠AOC=∠COD=72°﹣x

∴2×72°﹣x+3x=180°

解得x=36°

∴∠BOE=2x=2×36°=72°

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

①最大的负整数是﹣1;②数轴上表示数2 和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a的倒数是(﹣2)2 和﹣22相等.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC中,∠C90°AC6cmBC10cm,点PB点开始向C点运动速度是每秒1cm,设运动时间是t秒,

1)用含t的代数式来表示三角形ACP的面积.

2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点PBC上的什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的有(  )

①一个三角形至少有2个锐角;②在△ABC中,若∠A=2B=3C,则△ABC为直角三角形;③过n边形的一个顶点可作(n﹣3)条对角线;④n边形每增加一条边,则其内角和增加360°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1

(1)当∠A为70°时,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An 的数量关系____________;

(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=  

(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q —∠A1的值为定值.

其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

1B出发时与A相距______千米.

2B走了一段路后,自行车发生故障,进行修理,所用的时间是______小时.

3B出发后______小时与A相遇.

4)若B的自行车不发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.在图中表示出这个相遇点C

5)求出A行走的路程S与时间t的函数关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点O,AOC=50°,OE平分∠AOD,OF平分∠BOD.

(1)填空:∠BOD=   度;

(2)试说明OEOF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小兵、小颖三人的家和学校在同一条东西走向的路上,星期天,老师到这三家进行家访,从学校出发先向东走 250m 到小明家,后又向东走 350m 到小兵家,再向西行 800m 到小颖家,最后回到学校.

(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置;

(2)小明家距离小颖家多远?

(3)这次家访,老师共走了多少千米的路程?

查看答案和解析>>

同步练习册答案