【题目】△ABC中,∠BAC=60°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作菱形ADEF,使∠DAF=60°,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①AB与CF的位置关系为: ;
②BC,CD,CF之间的数量关系为: .
(2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸:如图3,当点D在线段BC的延长线上时,设AD与CF相交于点G,若已知AB=4,CD=AB,求AG的长.
【答案】(1) ①AB∥CF ; ②BC=CD+CF;(2)见解析;(3).
【解析】(1)①根据菱形的性质以及等边三角形的性质,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD,再根据BD+CD=BC,即可得出CF+CD=BC;
(2)依据△ABD≌△ACF,即可得到∠ACF+∠BAC=180°,进而得到AB∥CF;依据△ABD≌△ACF可得BD=CF,依据CD﹣BD=BC,即可得出CD﹣CF=BC;
(3)判定△ABD≌△ACF,即可得到CF=BD=BC+CD=6,∠ACG=∠ABC=60°=∠ADF,再根据△AGC∽△FGD,即可得到==,进而得出AG的长.
(1)①∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=60°=∠DAF,∴∠BAD=∠CAF.
又∵菱形ADEF中,AD=AF,∴△ABD≌△ACF,∴∠ACF=∠ABD=60°.
又∵∠ACB=60°,∴∠ABC+∠BCF=180°,∴AB∥CF;
②∵△ABD≌△ACF,∴BD=CF.
又∵BD+CD=BC,∴CF+CD=BC.
故答案为:AB∥CF;CF+CD=BC;
(2)结论①成立,而结论②不成立.证明如下:
如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=60°=∠DAF,∠ABD=120°,∴∠BAD=∠CAF.
又∵菱形ADEF中,AD=AF,∴△ABD≌△ACF,∴∠ACF=∠ABD=120°.
又∵∠CAB=60°,∴∠ACF+∠BAC=180°,∴AB∥CF;
∵△ABD≌△ACF, ∴BD=CF.
又∵CD﹣BD=BC,∴CD﹣CF=BC;
(3)如图3,连接DF,过A作AH⊥BD于H,则AH=2,DH=2+2=4,∴Rt△ADH中,AD=2.
∵AF=AD,∠DAF=60°,∴△ADF是等边三角形.
又∵∠BAC=60°,AB=AC,∠BAD=∠CAF,∴△ABD≌△ACF,∴CF=BD=BC+CD=6,∠ACG=∠ABC=60°=∠ADF.
又∵∠AGC=∠FGD,∴△AGC∽△FGD,∴===,∴可设AG=4x,则FG=2x,CG=6﹣2x,DG=2﹣4x,∴=,解得:x=,∴AG=.
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD,CD分别是△ABC两个外角的平分线.
(1)求证:∠ACD=∠ADC;
(2)若∠B=60°,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数的大致图象;
(4)结合函数图象,请写出函数的一条性质:______________________.
(5)解决问题:如果函数与直线y=a的交点有2个,那么a的取值范围是______________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=60°,BC=6,直线MN∥BC,且分别交边AB,AC于点M,N,已知直线MN将△ABC分为△AMN和梯形MBCN面积之比为5:1的两部分,如果将线段AM绕着点A旋转,使点M落在边BC上的点D处,那么BD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若任意一个代数式,在给定的范围内求得的最值恰好也在该范围内,则称这个代数式是这个范围的“友好代数式”.例如:关于的代数式,当时,代数式在时有最大值,最大值为1;在时有最小值,最小值为0,此时最值1,0均在(含端点)这个范围内,则称代数式是的“友好代数式”.
(1)若关于的代数式,当时,取得的最大值为________;最小值为________;代数式________(填“是”或“不是”)的“友好代数式”;
(2)以下关于的代数式,是的“友好代数式”的是________;
①;②;③;
(3)若关于的代数式是的“友好代数式”,则的值是________;
(4)若关于的代数式是的“友好代数式”,求的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,5),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周)
(1)写出点B的坐标( , );
(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;
(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com