【题目】若任意一个代数式,在给定的范围内求得的最值恰好也在该范围内,则称这个代数式是这个范围的“友好代数式”.例如:关于的代数式,当时,代数式在时有最大值,最大值为1;在时有最小值,最小值为0,此时最值1,0均在(含端点)这个范围内,则称代数式是的“友好代数式”.
(1)若关于的代数式,当时,取得的最大值为________;最小值为________;代数式________(填“是”或“不是”)的“友好代数式”;
(2)以下关于的代数式,是的“友好代数式”的是________;
①;②;③;
(3)若关于的代数式是的“友好代数式”,则的值是________;
(4)若关于的代数式是的“友好代数式”,求的最大值和最小值.
【答案】(1)3,0,不是 (2)② (3) (4)的最大值为4和最小值为0.
【解析】
(1)求出代数式的最大值和最小值,再根据友好代数式的定义进行判断即可;
(2)根据友好代数式的定义对各代数式进行求解即可;
(3)分三种情况进行求解:①;②;③,即可求出m的值;
(4)分三种情况进行求解:①;②;③,解得,即可求出的最大值和最小值.
(1)∵
∴当时,有最大值,最大值为3;当时,有最小值,最小值为0
∴,
故代数式不是的“友好代数式”.
(2)①∵当时,有最大值,最大值为3;当时,有最小值,最小值为-1,
∴,
∴不是的“友好代数式”.
②∵当时,有最大值,最大值为2;当时,有最小值,最小值为-2,
∴,
∴是的“友好代数式”.
③∵当时,有最大值,最大值为2;当时,有最小值,最小值为-4,
∴,
∴不是的“友好代数式”.
故是的“友好代数式”的是②.
(3)∵关于的代数式是的“友好代数式”
∴分以下三种情况进行讨论:
①
∴当时,有最大值,最大值为4;当时,有最小值,最小值为,
∴
∴不成立
②
∴,
∴
解得
∴当成立
③
∴当时,有最大值,最大值为;当时,有最小值,最小值为-4,
∵
∴不成立
故的值是.
(4)∵关于的代数式是的“友好代数式”
∴分以下三种情况进行讨论
①
当时,有最大值,最大值为;当时,有最小值,最小值为,
∴
解得
②
∵
∴时成立
③
当时,有最大值,最大值为;当时,有最小值,最小值为,
∴
无解
∴
∴的最大值为4和最小值为0.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=36°,AB=AC,CD是△ACB的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=10cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1 cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,当四边形QPBP′为菱形时,t的值为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠BAC=60°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作菱形ADEF,使∠DAF=60°,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①AB与CF的位置关系为: ;
②BC,CD,CF之间的数量关系为: .
(2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸:如图3,当点D在线段BC的延长线上时,设AD与CF相交于点G,若已知AB=4,CD=AB,求AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.
(1)AB中点P经过的路径长_____.
(2)点C运动的路径长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究
(1)已知如图1,若AB∥CD,P为平行线内的一点请你判断∠B+∠P+∠D= 度,并说明理由.
(2)如图2,若AB∥CD ,P1、P2为平行线内的两个点,请求出∠B+∠P1+∠P2+∠D= 度(不需要说明理由)
(3)如图3,如此类推若AB∥CD,P1、、P2、P3、P4、……Pn为平行线内的n个点,请求出∠B+∠P1+∠P2+∠P3+…….+∠Pn-1+∠Pn+∠D= 度(不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,一次函数y=(1-3k)x+2k-1,试回答:
(1)k为何值时,y随x的增大而减小?
(2)k为何值时,图像与y轴交点在x轴上方?
(3) 若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】城区某新建住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.
(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?
(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为和,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和等于90?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=x2+2x﹣3与x轴相交于A,B两点,与y轴交于点C,D为顶点.
(1)求直线AC的解析式和顶点D的坐标;
(2)已知E(0, ),点P是直线AC下方的抛物线上一动点,作PR⊥AC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接A、M、N、P构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;
(3)如图2,过点D作DF∥y轴交直线AC于点F,连接AD,Q点是线段AD上一动点,将△DFQ沿直线FQ折叠至△D1FQ,是否存在点Q使得△D1FQ与△AFQ重叠部分的图形是直角三角形?若存在,请求出AQ的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com