精英家教网 > 初中数学 > 题目详情

【题目】A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kgB型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?

【答案】A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.

【解析】

B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等列方程进行求解即可.

B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料由题意得,

解此分式方程得:

经检验是分式方程的解,且符合题意,

时,

答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:是锐角的两条高,分别是的中点,若EF=6.

1)证明:

2)判断的位置关系,并证明你的结论;

3)求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′

⑴写出A′、B′、C′的坐标;

⑵求出△ABC的面积;

⑶点Py轴上,且△BCP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数 y的图象与一次函数ymxb的图象交于两点A1,3,Bn,1).

1)求反比例函数与一次函数的函数关系式;

2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;

3)连接AOBO,求ABO的面积;

4)在y轴上存在点P,使AOP为等腰三角形,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴,轴的交点分别为,直线轴于点,两条直线的交点为,点是线段上的一个动点,过点轴,交轴于点,连接.

的面积;

在线段上是否存在一点,使四边形为矩形,若存在,求出点坐标:若不存在,请说明理由;

若四边形的面积为,设点的坐标为,求出关于的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,C为线段AE上一动点(不与点AE重合),在AE同侧分别作等边△ABC和等边△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQOC.以下五个结论:①△ACD≌△BCE②△AOC≌△BQC ; ③△APC≌△BOC; ④△DPC≌△EQC; ∠AOB60°

其中正确的是(

A. ①②③④⑤ B. ①④⑤ C. ①④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.

(1)求反比例函数和一次函数的表达式;

(2)求点C的坐标及AOB的面积.

查看答案和解析>>

同步练习册答案