【题目】如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数(k>0,x>0)的图象上,点D的坐标为(,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数(k>0,x>0)的图象上时,求菱形ABCD平移的距离;
【答案】(1)k=;(2)菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图像上.
【解析】试题分析: (1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;
(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数y=(x>0)的图象D′点处,得出点D′的纵坐标为2,求出其横坐标,进而得出菱形ABCD平移的距离.
试题解析:
(1)作DE⊥BO,DF⊥轴于点F,
∵点D的坐标为(,2),
∴DO= AD=3,
∴A点坐标为:(,5),
∴k=;
(2)∵将菱形ABCD向右平移,使点D落在反比例函数(x>0)的图象上D′,
∴DF=D′F′= 2,
∴D′点的纵坐标为2,
设点D′(, 2)
∴,解得,
∴,
∴菱形ABCD平移的距离为.
同理,将菱形ABCD向右平移,使点B落在反比例函数(x>0)的图象上
菱形ABCD平移的距离为
综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图像上.
科目:初中数学 来源: 题型:
【题目】如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的数量关系,请你写出∠OEP与∠ODP所有可能的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰和等腰中,斜边中点也是的中点,,.
()如图,则与的关系是__________.
()将绕点顺时针旋转,请画出图形井求的值.
()将绕点逆时针旋转,角度为,请判断()的结论是否仍然成立,若成立请证明,若不成立请画图说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,有一内接正方形DEFC,连接AF交DE于G,若AC=15,BC=10.
(1)求正方形DEFC的边长;(2)求EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,M为边AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.试说明BD与MF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A. 在AC、BC两边高线的交点处
B. 在AC、BC两边中线的交点处
C. 在AC、BC两边垂直平分线的交点处
D. 在∠A、∠B两内角平分线的交点处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及S四边形ABDC.
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC?若存在这样一点,求出点Q的坐标;若不存在,试说明理由.
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1) -+(-2)-3;
(2)(-3ab)·(-a2c)3·5b2(c2)3;
(3)x2(x-1)-x(x2+x-1);
(4)(a+3)(a-1)+a(a-2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com