【题目】如图1,点、在的边上,,,
(1)求证:
(2)如图2,若,,,求线段的长
【答案】(1)见解析,(2).
【解析】
(1)作AF⊥BC于点F,利用等腰三角形三线合一的性质得到BF=CF,DF=EF,相减后即可得到正确的结论.
(2)根据题意得△ABC为等腰直角三角形,△ADE是等边三角形,利用方程思想结合勾股定理可求出BF,DF的长,问题得解.
解:(1)如图:过点A作AF⊥BC于F.
∵AB=AC,AD=AE.
∴BF=CF,DF=EF,
∴BD=CE.
(2)如图:过点A作AF⊥BC于F.
∵∠BAC=90°,AB=AC,
∴△ABC为等腰直角三角形,AF⊥CB,
∴BF=AF,,
∵AB=2,
∴BF=AF=2,
∵AD=DE,∠DAE=60°,
∴△ADE是等边三角形,
∴AD=2DF,
设AD=2x,则DF=x,
∵,
∴,
解得,
∴BD=BF-DF=2-=
科目:初中数学 来源: 题型:
【题目】榴莲是热带著名水果之一,榴莲营养极为丰富,含有蛋白质、糖类、多种维生素、膳食纤维、脂肪、叶酸,氨基酸和矿物质,有强身健体、滋阴补阳之功效.它的气味浓烈、爱之者赞其香,厌之者怨其臭,喜欢榴莲的人也喜欢榴莲干,榴莲千层,榴莲披萨、榴莲酥等榴莲加工制品,某校数学兴趣小组为了了解本校学生喜爱榴莲的情况,随机抽取了200名学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:每一位同学在任何一种分类统计中只有一种选择)
请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”所对应的圆心角度数为______度;喜欢榴莲千层的人数为______人;请补全条形统计图.
(2)若该校学生人数为8000人,请根据上述调查结果,估计该校学生中最爱吃榴莲干和榴莲酥的人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,⊿ABC的顶点在格点上。 且A(1,-4),B(5,-4),C(4,-1)
【1】画出⊿ABC;
【1】求出⊿ABC 的面积;
【1】若把⊿ABC向上平移2个单位长度,再向左平移4个单位长度得到⊿BC,在图中画出⊿BC,并写出B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算题
(1)计算:(3﹣π)0+(﹣ )﹣2+ ﹣2|sin45°﹣1|;
(2)先化简,再求值: ,其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为( )
( ),得( )
去括号,得
( ),得( )
合并同类项,得(合并同类项法则)
( ),得( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)
(问题解决)
(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。
(应用拓展)
(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展、体育特长、艺术特长和时间活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题.
(1)求扇形统计图中的m的值,并补全条形统计图;
(2)已知该校800名学生,计划开设“实践活动类”课程,每班安排20人,问学校开设多少个“实践活动课”课程的班级比较合理.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com