·­×ªÀàµÄ¼ÆËãÎÊÌâÔÚÈ«¹ú¸÷µØµÄÖп¼ÊÔ¾íÖгöÏֵįµÂʺܴó£¬Òò´ËС·ÆÍ¬Ñ§½áºÏijÊÐÊýѧÖп¼¾íµÄµ¹ÊýµÚ¶þÌâ¶ÔÕâÀàÎÊÌâ½øÐÐÁËרÃŵÄÑо¿£®ÄãÄܺÍС·ÆÒ»Æð½â¾öÏÂÁи÷ÎÊÌâÂ𣿣¨ÒÔϸ÷ÎÊÖ»ÒªÇóд³ö±ØÒªµÄ¼ÆËã¹ý³ÌºÍ¼ò½àµÄÎÄ×Ö˵Ã÷¼´¿É£®£©
£¨1£©Èçͼ¢Ù£¬Ð¡·ÆÍ¬Ñ§°ÑÒ»¸ö±ß³¤Îª1µÄÕýÈý½ÇÐÎֽƬ£¨¼´¡÷OAB£©·ÅÔÚÖ±Ïßl1ÉÏ£¬OA±ßÓëÖ±Ïßl1ÖØºÏ£¬È»ºó½«Èý½ÇÐÎֽƬÏòÓÒ·­×ªÒ»Öܻص½³õʼλÖã¬Çó¶¥µãOËù¾­¹ýµÄ·³Ì£»
£¨2£©Ð¡·Æ½øÐÐÀà±ÈÑо¿£ºÈçͼ¢Ú£¬Ëý°Ñ±ß³¤Îª1µÄÕý·½ÐÎֽƬOABC·ÅÔÚÖ±Ïßl2ÉÏ£¬OA±ßÓëÖ±Ïßl2ÖØºÏ£¬È»ºó½«Õý·½ÐÎֽƬÏòÓÒ·­×ªÈô¸É´Î£®ËýÌá³öÁËÈçÏÂÎÊÌ⣺
ÎÊÌâ¢Ù£ºÈôÕý·½ÐÎֽƬOABC½ÓÉÏÊö·½·¨·­×ªÒ»Öܻص½³õʼλÖã¬Çó¶¥µãO¾­¹ýµÄ·³Ì£»
ÎÊÌâ¢Ú£ºÕý·½ÐÎֽƬOABC°´ÉÏÊö·½·¨¾­¹ý
 
´ÎÐýת£¬¶¥µãO¾­¹ýµÄ·³ÌÊÇ
41+20
2
2
¦Ð£®
£¨3£©¢ÙС·ÆÓÖ½øÐÐÁ˽øÒ»²½µÄÍØÕ¹Ñо¿£¬Èô°ÑÕâ¸öÕýÈý½ÇÐεÄÒ»±ßOAÓëÕâ¸öÕý·½ÐεÄÒ»±ßOAÖØºÏ£¨Èçͼ3£©£¬È»ºóÈÃÕâ¸öÕýÈý½ÇÐÎÔÚÕý·½ÐÎÉÏ·­×ª£¬Ö±µ½ÕýÈý½ÇÐεÚÒ»´Î»Øµ½³õʼλÖ㨼´Oµã£¬Aµã£¬BµãµÄÏà¶ÔλÖúͳõʼʱһÑù£©£¬Çó¶¥µãOËù¾­¹ýµÄ×Ü·³Ì£®
¢ÚÈô°Ñ±ß³¤Îª1µÄÕý·½ÐÎOABC·ÅÔڱ߳¤Îª1µÄÕýÎå±ßÐÎOABCDÉÏ·­×ª£¨Èçͼ¢Ü£©£¬Ö±µ½Õý·½ÐεÚÒ»´Î»Øµ½³õʼλÖ㨼´Oµã£¬Aµã£¬Bµã£¬CµãµÄÏà¶ÔλÖúͳõʼʱһÑù£©£¬Çó¶¥µãOËù¾­¹ýµÄ×Ü·³Ì£®
¿¼µã£ºÔ²µÄ×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾ÝÕýÈý½ÇÐεÄÐÔÖʼ°»¡³¤¹«Ê½Çó³öµãAÈÆµãB¡¢µãCÐýתµÄÁ½¶Î»¡³¤Ïà¼Ó¼´¿É£»
£¨2£©¢Ù¸ù¾ÝÕý·½ÐÎÐýתһÖܵÄ·¾¶£»ÀûÓû¡³¤¹«Ê½ÒÔ¼°ÉÈÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É£»
¢ÚÀûÓÃÕý·½ÐÎֽƬOABC¾­¹ý4´ÎÐýתµÃ³öÐýת·¾¶£¬½ø¶øµÃ
41+20
2
2
¦Ð=
20(2+
2
)
2
+
¦Ð
2
£¬¼´¿ÉµÃ³öÐýת´ÎÊý£»
£¨3£©¢ÙÊ×ÏÈÇó³öÿ·­Èý´Î·­Ò»ÖÜ£¬¶¥µãOËù¾­¹ýµÄ×Ü·³Ì³¤£¬½ø¶øµÃ³öÈý½ÇÐι²·­ËÄÖܻص½³õʼλÖã¬ËùÒÔ¶¥µãOËù¾­¹ýµÄ×Ü·³Ì³¤£»
¢ÚÊ×ÏÈÇó³öÕý·½ÐÎÿ·­ËĴη­Ò»ÖÜ£¬¶¥µãOËù¾­¹ýµÄ×Ü·Ïß³¤£¬ÔÙÀûÓù²·­5Öܻص½³õʼλÖ㬼´¿ÉµÃ³ö¶¥µãOËù¾­¹ýµÄ×Ü·³Ì³¤£»
½â´ð£º½â£º£¨1£©¶¥µãOËù¾­¹ýµÄ×Ü·³ÌΪ£º
120
180
¦Ð¡Á1¡Á2=
4
3
¦Ð£¬
£¨2£©¢Ù¶¥µãO¾­¹ýµÄ×Ü·³ÌΪ£º
90
180
¦Ð¡Á1¡Á2+
90
180
¦Ð¡Á
2
=¦Ð+
2
2
¦Ð=
2+
2
2
¦Ð£¬
¢ÚÓÉ¢Ù£ºÃ¿·­×ªÒ»Öܶ¥µãO¾­¹ýµÄ×Ü·
2+
2
2
¦Ð£¬
ÓÉ
41+20
2
2
¦Ð=
20(2+
2
)
2
+
¦Ð
2
£®¼´·­×ª20ÖܺóÔÙ·­Ò»´Î£¬¹²·­81´Î£®                      
£¨3£©¢Ùÿ·­Èý´Î·­Ò»ÖÜ£¬¶¥µãOËù¾­¹ýµÄ×Ü·³ÌΪ£º
120
180
¦Ð¡Á1¡Á2=
4
3
¦Ð£¬
¹²·­ËÄÖܻص½³õʼλÖã¬ËùÒÔ¶¥µãOËù¾­¹ýµÄ×Ü·³ÌΪ£º
7
3
¦Ð¡Á4=
28
3
¦Ð£¬
¢Ú¢Úÿ·­ËĴη­Ò»ÖÜ£¬¶¥µãOËù¾­¹ýµÄ×Ü·³ÌΪ£º
162
180
¦Ð¡Á1¡Á2+
162
180
¦Ð¡Á
2
=
81
45
¦Ð+
9
2
10
¦Ð£¬
¹²·­5Öܻص½³õʼλÖã¬ËùÒÔ¶¥µãOËù¾­¹ýµÄ×Ü·³ÌΪ£º
5¡Á£¨
81
45
¦Ð+
9
2
10
¦Ð£©=
18+9
2
2
¦Ð£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÐýתµÄÐÔÖÊÒÔ¼°µÈ±ßÈý½ÇÐεÄÐÔÖʺÍÕý·½ÐεÄÐÔÖÊÒÔ¼°»¡³¤¹«Ê½µÈ֪ʶ£¬ÊìÁ·ÀûÓÃÕý¶à±ßÐεÄÐÔÖÊÒÔ¼°»¡³¤¹«Ê½ÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
x-1
+
1-x
=y+4£¬ÇóxyµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÌÝÐÎABCD£¬ABÓëCDƽÐУ¬¡ÏBCD=2¡ÏD=2¦Á£¬¡ÏCEF=¡ÏB£¬
£¨1£©ÓæÁ±íʾ¡ÏCEF=
 
£»
£¨2£©µ±AB=BCʱ£¬²ÂÏëEC¡¢EFµÄÊýÁ¿¹ØÏµ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì×飺
y=2x-6
y=-x+3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Òòʽ·Ö½â£º£¨a-2b£©2-£¨2a+b£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÅжÏÕýÈ·µÄÓУ¨¡¡¡¡£©
¢ÙÃèÊöÒ»×éÊý¾ÝµÄƽ¾ùÊý¡¢·½²îÖ»ÓÐÒ»¸ö£»
¢ÚÃèÊöÒ»×éÊý¾ÝµÄÖÐλÊý¡¢¼«²îÖ»ÓÐÒ»¸ö£»
¢ÛÃèÊöÒ»×éÊý¾ÝµÄÖÚÊýÖ»ÓÐÒ»¸ö£»
¢ÜÃèÊöÒ»×éÊý¾ÝµÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊý¶¼Ò»¶¨ÊÇÕâ×éÊý¾ÝÖеÄÊý£»
¢ÝÒ»×éÊý¾ÝÖеÄÒ»¸öÊýµÄ´óС·¢ÉúÁ˱仯£¬Ò»¶¨»áÓ°ÏìÕâ×éÊý¾ÝµÄƽ¾ùÊý£¬ÖÚÊýºÍÖÐλÊý£®
A¡¢1¸öB¡¢2¸öC¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx£¾0£¬ÇÒ£¨x+2£©|x|-2=1£¬Ôòx=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈÑü¡÷ABCµÄÒ»±ß³¤a=3£¬ÁíÁ½±ß³¤b¡¢cÇ¡ºÃÊǹØÓÚxµÄ·½³Ìx2-£¨k+2£©x+2k=0µÄÁ½¸ö¸ù£¬Çó¡÷ABCµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÊÇÒ»Êýֵת»»»ú£¬ÈôÊäÈëµÄxΪ-5£¬ÔòÊä³öµÄ½á¹ûΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸