【题目】如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).
(1)求m,k的值;
(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A,且MN∥BC,点D是直线MN上一点,不与点A重合.若点E是线段AB上一点,且DE=DA.
(1)请说明线段DE⊥DA.
(2)如图2,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 017的坐标为( )
A. (-504,-504) B. (-505,-504) C. (504,-504) D. (-504,505)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的点,若点的坐标为(其 中为常数, 且,则称点为点的“属派生点” . 例如:的“ 2 属派生点”为,即.
(Ⅰ) 点的“ 3 属派生点” 的坐标为 ;
(Ⅱ) 若点的“ 5 属派生点” 的坐标为,求点的坐标;
(Ⅲ) 若点在轴的正半轴上, 点的“属派生点”为点, 且线段的长度为线段长度的 2 倍, 求的值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队修筑一条公路,甲队从南向北方向修筑,乙队从北向南方向修筑.甲、乙两队同时开工,乙队施工几天后因另有任务提前离开,甲队继续修筑公路.当乙队任务完成后,因赶时间,乙队回来继续修筑公路,直到公路修通.在修路过程中,甲、乙两队的工作效率保持不变.设甲、乙两队修筑公路的长度为y(米),施工时间为x(天),y与x之间的函数图象如图所示.
(1)甲队每天修筑公路__________米,乙队每天修筑公路__________米;
(2)求乙队离开的天数;
(3)求乙队回来后修筑公路的长度y与x之间的函数关系式,并写出自变量x的取值范围;
(4)求这条公路的总长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格万元台 | a | b |
处理污水量吨月 | 240 | 200 |
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应区“美丽广西 清洁乡村”的号召,某校开展“美丽广西 清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2 , 绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.该项绿化工作原计划每天完成多少m2?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com