精英家教网 > 初中数学 > 题目详情
3.若a+b=4,a+c=$\frac{1}{2}$,则(b-c)2-2(b-c)+$\frac{3}{4}$=6.

分析 由已知等式相减求出b-c的值,代入原式计算即可得到结果.

解答 解:∵a+b=4,a+c=$\frac{1}{2}$,
∴b-c=3$\frac{1}{2}$,
则原式=$\frac{49}{4}$-7+$\frac{3}{4}$=6.
故答案为:6.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.
解:∠A=∠3.
理由是:

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示,已知直线y=kx+3过点M,求直线与x轴,y轴的交点坐标. 当x>时,y<0,当x≤时,y≥0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知抛物线l:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$)与y轴的交点M的坐标是(0,c),我们称以点M的顶点,对称轴是y轴且过点P的抛物线与抛物线l的伴随抛物线,直线PM为抛物线l的伴随直线的解析式
(1)请直接写出抛物线y=x2-4x+2的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式:
伴随直线的解析式:
(2)若一条抛物线的伴随抛物线直线分别是y=-x2+3和y=-x+3,求这条抛物线的解析式
(3)求抛物线l:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线l:y=ax2-4ax+2a(a≠0)与x轴交于A、B两点,它的伴随抛物线与x轴交于C、D两点,则线段AB与CD相等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在?ABCD中,两条对角线AC与BD相交于点O,BC=5,AC=6,BD=8,求△AOB的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简再求值:
(1)已知x=$\sqrt{3}$,求代数式(x-2)2-(x-2)(x+2)+2$\sqrt{3}$的值.
(2)已知a=$\sqrt{3}$+$\sqrt{2}$,b=$\sqrt{3}$-$\sqrt{2}$,求a2-ab+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知方程组$\left\{\begin{array}{l}{y=ax+2}\\{y=bx-1}\end{array}\right.$的解$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$适合一次函数y=kx+1,则a+b+k=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.从?ABCD的一个钝角顶点向对边分别作高,如果两条高的夹角为45°,求?ABCD各个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)13+(+7)-(-20)-(-40)-(+6);
(2)3$\frac{7}{12}$+(-1$\frac{1}{4}$)+(-3$\frac{7}{12}$)+1$\frac{1}{4}$+(-4$\frac{1}{8}$).

查看答案和解析>>

同步练习册答案