精英家教网 > 初中数学 > 题目详情
11.如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于$\frac{1}{2}$EF的长为半径作弧,两弧交于点G;作射线AG,交边CD于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为(  )
A.4B.5C.6D.7

分析 根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,由此求出DH、CH即可解决问题.

解答 解:根据作图的方法可得AG平分∠DAB,
∵AG平分∠DAB,
∴∠DAH=∠BAH,
∵CD∥AB,
∴∠DHA=∠BAH,
∴∠DAH=∠DHA,
∴AD=DH,
∵AB=CD=6,AD=BC=4,
∴CH=6-4=2,
∴四边形ABCH的周长与三角形ADH的周长之差=(AB+BC+CH+AH)-(AD+AH+DH)=AB+CH-DH=6+2-4=4,
故选A.

点评 此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.关于x的一元二次方程(k+1)x2-2x+1=0没有实数根,则实数k的取值范围是k>0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.
已知:线段a.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为2a.作法:如图,(1)作线段BC=a;(2)作线段BC的垂直平分线DE交BC于点F;(3)在射线FD上顺次截取线段FG=GA=a,连接AB,AC.所以△ABC即为所求作的等腰三角形.
请回答:得到△ABC是等腰三角形的依据是:
①线段垂直平分线上的点到线段两个端点的距离相等:
②有两条边相等的三角形是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,菱形ABCD中,E,F分别在边AD、AB上,DE=BF.求证:EC=FC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.
求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,若BD与AC的和为23,AB:AD=1:2,△COD的周长为15,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知函数y=2x+1.
(1)画出函数的图象,在函数图象上任取两点M,N,并写出这两点的坐标,再分别把M,N沿x轴方向向左平移2个单位,得到M1,N1,试写出M1,N1的坐标.
(2)若把函数图象上的所有点都沿x轴方向向左平移2个单位,得到的图象是什么?试写出其函数表达式.
(3)对于函数y=kx+b(k≠0),若将其图象沿x轴方向向左平移2个单位,试写出其图象的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系中,经过点A的双曲线y=$\frac{k}{x}$(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为$\sqrt{2}$,∠AOB=∠OBA=45°,则k的值为1+$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,给出下列结论:
①b2=4ac;②abc>0;③a>c;④4a-2b+c>0,其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案