精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34).

1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1

2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2B2C2坐标;

3)请画出△ABCO逆时针旋转90°后的△A3B3C3;并写出点A3B3C3坐标.

【答案】(1)见解析;(2)见解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)见解析,A3(﹣11)、B3(﹣24)、C3(﹣43).

【解析】

1)利用平移的性质得出对应点的位置进而得出答案

2)利用关于原点对称点的性质得出对应点的位置进而得出答案

3)利用旋转的性质得出旋转后的点的坐标进而得出答案

解:(1)如图,△A1B1C1即为所求;

2)如图,△A2B2C2即为所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);

3)如图,△A3B3C3即为所求,A3(﹣11)、B3(﹣24)、C3(﹣43).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:

一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____

如图①,,求的长度;

如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数(保留痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,点,过点作直线轴互相垂直,轴上的一个动点,且.

(1)如图1,若点是第二象限内的一个点,且时,求点的坐标;(用的代数式表示)

(2)如图2,若点是第三象限内的一个点,设点的坐标,求的取值范围:

(3)如图3,连接,作的平分线,点分别是射线与边上的两个动点,连接,当时,试求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.

(1)猜想BGEG的数量关系.并说明理由;

(2)延长DE,BA交于点H,其他条件不变,

①如图2,若∠ADC=60°,求的值;

②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC10BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,求五边形BFCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.

(1)当CM:CB=1:4时,求CF的长.

(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.

(3)当△ABM∽△EFN时,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°B=30°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是

ADBAC的平分线;②∠ADC=60°DAB的中垂线上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).

A. 甲的数学成绩高于班级平均分,且成绩比较稳定

B. 乙的数学成绩在班级平均分附近波动,且比丙好

C. 丙的数学成绩低于班级平均分,但成绩逐次提高

D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳

查看答案和解析>>

同步练习册答案