分析 由矩形的性质得出∠MDO=∠NBO,由ASA证明△MOD≌△NOB,得出OM=ON,证出四边形MBND是平行四边形,再由MN⊥BD,即可得出结论.
解答 证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠MDO=∠NBO,
∵MN垂直平分对角线BD,
∴OD=OB,MN⊥BD,
在△MOD和△NOB中,$\left\{\begin{array}{l}{∠MDO=∠NBO}&{\;}\\{OD=OB}&{\;}\\{∠MOD=∠NOB}&{\;}\end{array}\right.$,
∴△MOD≌△NOB(ASA),
∴OM=ON,
∴四边形MBND是平行四边形,
又∵MN⊥BD,
∴四边形MBND是菱形.
点评 本题考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定、菱形的判定;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 0.25是0.5的一个平方根 | |
| B. | 正数有两个平方根,且这两个平方根之和等于0 | |
| C. | 72的平方根是7 | |
| D. | 负数有一个平方根 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com