【题目】已知直线y=kx+6(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒2个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当k=-时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),①求CD的长;②设△COD的OC边上的高为h,当t为何值时,h的值最大?
【答案】(1) ①C(2,4);Q(4,0);②1.5秒或2秒;(2)①CD=;②当t为秒时,h的值最大.
【解析】
(1)①求出函数解析式,求出A、B的坐标,当t=1,求出OP=2,AQ=2,从而得到C,Q的解析式;
②由题意得,P(2t,0),C(2t,-2t+6),Q(6-2t,0),分两种情况讨论:情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°;情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°.
(2)①由题意得:C(2t,-t+6),根据△DEC∽△AOB,得到,求出CD的长;
②S△COD为定值,要使OC边上的高h的值最大,只要OC最短,当OC⊥AB时,OC最短,此时OC的长为,判断出Rt△PCO∽Rt△OAB,得到,解答即可.
(1)当k=-1时,直线为y=-x+6,可知,A(6,0),B(0,6),
①t=1时,OP=2,得C(2,4);AQ=2,得Q(4,0).
②由题意得,P(2t,0),C(2t,-2t+6),Q(6-2t,0),
分两种情况讨论:情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,
∴CQ⊥OA,
∵CP⊥OA,
∴点P与点Q重合,OQ=OP,即6-2t=2t,
∴t=1.5.
情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°,
∵OA=OB=6,
∴△AOB是等腰直角三角形,
∴△ACO也是等腰直角三角形,
∵CP⊥OA,
∴AQ=2CP,即2t=2(-2t+6),
∴t=2,
∴满足条件的t的值是1.5秒或2秒.
(2)①由题意得:C(2t,-t+6),
∴以C为顶点的抛物线解析式是y=(x-2t)2-t+6,
由(x-2t)2-t+6=-x+6,
解得x1=2t,x2=2t-,
过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°
∵DE∥OA,
∴∠EDC=∠OAB,
∴△DEC∽△AOB,
∴,
∵AO=8,AB=10,
∵AO=8,AB=10,
DE=2t-(2t-)=,
∴
②∵CD=,
CD边上的高=,
∴S△COD=,
∴S△COD为定值,要使OC边上的高h的值最大,只要OC最短,当OC⊥AB时,OC最短,此时OC的长为,∠BCO=90°,
∵∠AOB=90°,
∴∠COP=90°-∠BOC=∠OBA,
又∵CP⊥OA,
∴Rt△PCO∽Rt△OAB.
∴,
,
2t=,
∴t=,
∴当t为秒时,h的值最大.
科目:初中数学 来源: 题型:
【题目】已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.
x | … | 1 | 2 | 4 | 5 | 6 | 8 | 9 | … |
y | … | 3.92 | 1.95 | 0.98 | 0.78 | 2.44 | 2.44 | 0.78 | … |
小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.
下面是小风的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=7对应的函数值y约为多少;
②写出该函数的一条性质.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xoy中,二次函数的图象与x轴的交点为A,B,顶点为C,点D为点C关于x轴的对称点,过点A作直线l:交BD于点E,连接BC的直线交直线l于K点.
(1)问:在四边形ABKD内部是否存在点P,使它到四边形ABKD四边的距离都相等?
若存在,请求出点P的坐标;若不存在,请说明理由;
(2)若M,N分别为直线AD和直线l上的两个动点,连结DN,NM,MK,如图2,求DN+NM+MK和的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是( )
A.O是△AEB的外心,O不是△AED的外心
B.O是△BEC的外心,O不是△BCD的外心
C.O是△AEC的外心,O不是△BCD的外心
D.O是△ADB的外心,O不是△ADC的外心
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.
(1)若α=60°,k=1,
①如图1,当Q为BC中点时,求∠PAC的度数;
②直接写出PA、PQ的数量关系;
(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴、y轴的交点为A,B.按以下步骤作图:①以点A为圆心,适当长度为半径作弧,分别交AB,x轴于点C,D;②分别以点C,D为圆心,大于的长为半径作弧,两弧在∠OAB内交于点M;③作射线AM,交y轴于点E.则点E的坐标为( )
A.(0,)B.(0,)C.(0,)D.(0,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com