【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
【答案】(1)解析式为y=﹣x2+2x+3;(2)当m=时,S有最大值,最大值为; (3)存在,P点坐标为(,3)或(﹣3+3,12﹣6)时,△PCD为直角三角形.
【解析】试题分析:(1)把B点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;
(2)把(1)中的一般式配成顶点式可得到M(1,4),设直线BM的解析式为y=kx+n,再利用待定系数法求出直线BM的解析式,则P(m,﹣2m+6)(1≤m<3),于是根据三角形面积公式得到S=﹣m2+3m,然后根据二次函数的性质解决问题;
(3)讨论:∠PDC不可能为90°;当∠DPC=90°时,易得﹣2m+6=3,解方程求出m即可得到此时P点坐标;当∠PCD=90°时,利用勾股定理得到和两点间的距离公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,
然后解方程求出满足条件的m的值即可得到此时P点坐标.
试题解析:(1)把B(3,0),C(0,3)代入y=﹣x2+bx+c得,解得,
所以抛物线解析式为y=﹣x2+2x+3;
(2)S有最大值.理由如下:
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴M(1,4),
设直线BM的解析式为y=kx+n,
把B(3,0),M(1,4)代入得,解得,
∴直线BM的解析式为y=﹣2x+6,
∵OD=m,
∴P(m,﹣2m+6)(1≤m<3),
∴S=m(﹣2m+6)=﹣m2+3m=﹣(m﹣)2+,
∵1≤m<3,
∴当m=时,S有最大值,最大值为;
(3)存在.
∠PDC不可能为90°;
当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m=,此时P点坐标为(,3),
当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,
整理得m2+6m﹣9=0,解得m1=﹣3﹣3(舍去),m2=﹣3+3,
当m=﹣3+3时,y=﹣2m+6=6﹣6+6=12﹣6,此时P点坐标为(﹣3+3,12﹣6),
综上所述,当P点坐标为(,3)或(﹣3+3,12﹣6)时,△PCD为直角三角形.
科目:初中数学 来源: 题型:
【题目】(10分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
分数 | 7分 | 8分 | 9分 | 10分 |
人数 | 11 | 0 |
| 8 |
(1)请将甲校成绩统计表和图2的统计图补充完整;
(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算正确的是( )
A.﹣a(a﹣b)=﹣a2﹣ab
B.(2ab)2+a2b=4ab
C.2ab3a=6a2b
D.(a﹣1)(1﹣a)=a2﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矿泉水每瓶3元,且3个空矿泉水瓶可以换一瓶矿泉水,现有几个学生带15元钱去买矿泉水喝,他们最多可以喝矿泉水的瓶数为( )
A. 5B. 8C. 7D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列等式从左到右的变形是因式分解的是( )
A. 2x(x+3)=2x2+6x B. 24xy2=3x8y2
C. x2+2xy+y2+1=(x+y)2+1 D. x2﹣y2=(x+y)(x﹣y)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com