精英家教网 > 初中数学 > 题目详情

【题目】某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.

(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.
(2)求a,b的值.
(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.

【答案】
(1)

解:由图象可知,当手机通话时间为50分钟时,A、B两种套餐的通话费用分别为10元、20元;


(2)

解:a= =0.2,b= =0.18,

所以,a,b的值分别是0.2,0.18;


(3)

解:A种套餐超过免费时间y与x的函数关系式为y=0.2x﹣5(x>75),

由图象可知,当75<x<150时,若A、B两种套餐的通话费相同,则0.2x﹣5=20,

解得x=125,

∴当x>125时,选择B种套餐更合算.


【解析】(1)根据图象即可求得;(2)根据待定系数法即可求得;(3)根据两种收费相同列出方程,求解,大于收费相同的时间选择B套餐.
【考点精析】关于本题考查的确定一次函数的表达式,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.

(1)求证:DE=AB.
(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上).

(1)写出△ABC的面积:_______.

(2)画出△ABC关于y轴对称的△A1B1C1.

(3)写出点B及其对称点B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旋转变换是全等变换的一种形式,我们在解题实践中经常用旋转变换的方法来构造全等三角形来解决问题。

(1)方法探究:如图①,在△ABC中,∠BAC=90°,AB=AC,点D、E在边BC上,∠DAE=45°

试探究线段BD、CE、DE可以组成什么样的三角形。我们可以过点BBF⊥BC,使BF=EC,连接AF、DF,易得∠AFB=45°进而得到△AFB≌△AEC,相当于把△AEC绕点A顺时针旋转90°到△AFB,请接着完成下面的推理过程:

∵△AFB≌△AEC,

∴∠BAF= ,AF=AE,

∵∠BAC=90°,∠DAE=45°,

∴∠BAD+∠CAE=

∴∠BAF+∠BAD=45°,

∴∠DAF=45°=

在△DAF与△DAE

AF=AE,

∠DAF=∠DAE,

AD=AD,

∴△DAF≌△DAE,

∴DF=

∵BD、BF、DF组成直角三角形

∴BD、CE、DE组成直角三角形.

(2)方法运用

如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,点E在边BC上,点F在边CD上,∠EAF=45°试判断线段BE、DF、EF之间的数量关系,并说明理由。

如图③,在①的基础上若点E、F分别在BCCD的延长线,其他条件不变,①中的关系在图③中是否仍然成立?若成立请说明理由;若不成立请写出新的关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,CD是∠ACB的角平分线,CEAB边上的高,

1)若∠A=40°∠B=60°,求∠DCE的度数.

2)若∠A=m∠B=n,求∠DCE.(用mn表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.

(1)求证:∠FBD=∠CAD;

(2)求证:BE⊥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AEABAFACAE=ABAF=AC.试判断线段EC与BF的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,ADBC于点D,BEAC于点E,且DF=DC。

(1)求证:BD=AD;

(2)AF=1,DC=3,求BF的长.

查看答案和解析>>

同步练习册答案