【题目】在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).
(1)点()的“双角坐标”为_____;
(2)若点P到x轴的距离为,则m+n的最小值为_____.
【答案】(60°,60°) 90
【解析】
(1)分别求出tan∠POA、tan∠PAO即可得∠POA、∠PAO的度数,从而得出答案;
(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,则∠OPA需取得最大值,OA中点为圆心,为半径画圆,与直线y=相切于点P,由∠OPA=∠1>∠OP′A知此时∠OPA最大,∠OPA=90°,即可得出答案.
解:(1)∵P(,),OA=1,
∴tan∠POA= =,tan∠PAO==,
∴∠POA=60°,∠PAO=60°,
即点P的“双角坐标”为(60°,60°),
故答案为:(60°,60°);
(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,
则∠OPA需取得最大值,
如图,
∵点P到x轴的距离为,OA=1,
∴OA中点为圆心,为半径画圆,与直线y=相切于点P,
在直线y=上任取一点P′,连接P′O、P′A,P′O交圆于点Q,
∵∠OPA=∠1>∠OP′A,
此时∠OPA最大,∠OPA=90°,
∴m+n的最小值为90,
故答案为:90.
科目:初中数学 来源: 题型:
【题目】某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点 D.
(1)求反比例函数的解析式和点D的坐标;
(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红参加学校组织的庆祝党的十九大胜利召开知识竞赛,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,可是小红这两道题都不会,不过竞赛规则规定每位选手有两次求助机会,使用“求助”一次可以让主持人去掉其中一题的一个错误选项,主持人提醒小红可以使用两次“求助”.
(1)如果小红两次“求助”都在第一道题中使用,那么小红通关的概率是 .
(2)如果小红将每道题各用一次“求助”,请用树状图或者列表来分析她顺序通关的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤 | 每件的售价/元 | 每件的成本/元 |
甲 | 50 | |
乙 | 60 | |
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;
(2)若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;
(3)在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ACB和△DCE中,∠ACB=∠DCE=90°,AC=BC,DC=EC,M为DE的中点,联结BE.
(1)如图1,当点A、D、E在同一直线上,联结CM,求证:CM=;
(2)如图2,当点D在边AB上时,联结BM,求证:BM2=()2+()2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB:y=kx+b(k<0,b>0),与x轴交于点A、与y轴交于点B,直线CD与x轴交于点C、与y轴交于点D.若直线CD的解析式为y=﹣(x+b),则称直线CD为直线AB的”姊线”,经过点A、B、C的抛物线称为直线AB的“母线”.
(1)若直线AB的解析式为:y=﹣3x+6,求AB的”姊线”CD的解析式为: (直接填空);
(2)若直线AB的”母线”解析式为:,求AB的”姊线”CD的解析式;
(3)如图2,在(2)的条件下,点P为第二象限”母线”上的动点,连接OP,交”姊线”CD于点Q,设点P的横坐标为m,PQ与OQ的比值为y,求y与m的函数关系式,并求y的最大值;
(4)如图3,若AB的解析式为:y=mx+3(m<0),AB的“姊线”为CD,点G为AB的中点,点H为CD的中点,连接OH,若GH=,请直接写出AB的”母线”的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为30°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com