【题目】如图,已知A(4,0),B(3,3),以OA、AB为边作OABC,则若一个反比例函数的图象经过C点,则这个反比例函数的表达式为_____.
【答案】y=﹣.
【解析】
过B作BE⊥x轴,过C作CD⊥x轴,可得∠BEA=∠CDO=90°,由四边形ABCO为平行四边形,得到对边平行且相等,利用两直线平行得到一对同位角相等,利用AAS得到三角形ABE与三角形OCD全等,利用全等三角形对应边相等得到AE=OD,BE=CD,确定出C的坐标,利用待定系数法确定出反比例函数的解析式,即可得出答案.
过B作BE⊥x轴,过C作CD⊥x轴,可得∠BEA=∠CDO=90°,
∵四边形ABCO为平行四边形,
∴AB∥OC,AB=OC,
∴∠BAE=∠COD,
在△ABE和△OCD中,
∴△ABE≌△OCD(AAS),
∴BE=CD,AE=OD,
∵A(4,0),B(3,3),
∴OA=4,BE=OE=3,
∴AE=OA﹣OE=4﹣3=1,
∴OD=AE=1,CD=BE=3,
∴C(﹣1,3),
设过点C的反比例解析式为y=,
把C(﹣1,3)代入得:k=﹣3,
则反比例解析式为y=﹣.
故答案为:y=﹣
科目:初中数学 来源: 题型:
【题目】如图(1),已知四边形ABCD和一点O,求作四边形A′B′C′D′,使它与四边形ABCD关于点O对称;如果把O点移至如图(2)所示位置,又该怎么作图呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。假设所进车辆全部售完,为了使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明画了一个锐角,并作出了它的两条高和,两高相交于点.小明说图形中共有两对相似三角形,他说的对吗?请你判定一下,如果正确,就其中的一对进行说理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要把破残的圆片复制完整,已知弧上三点A、B、C.
(1)用尺规作图法,找出弧BAC所在圆的圆心O;(保留作图痕迹,不写作法)
(2)设△ABC为等腰三角形,底边BC=10 cm,腰AB=6 cm,求圆片的半径R;(结果保留根号)
(3)若在(2)题中的R满足n<R<m(m、n为正整数),试估算m和n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 抛物线与 交于点A,过点A作轴的平行线,分别交两条抛物线于点B、C.则以下结论:① 无论取何值,的值总是正数;② ;③ 当时,;④ 当>时,0≤<1;⑤ 2AB=3AC.其中正确结论的编号是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则ABCD的边BC上的高为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)
(1)如图1,若点C是AB的中点,则∠AED= ;
(2)如图2,若点C不是AB的中点
①求证:△DEF为等边三角形;
②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com