【题目】点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.
(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;
(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.
【答案】(1)OE=OF.理由见解析;(2)补全图形如图所示见解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.
【解析】
(1)根据矩形的性质以及垂线,即可判定,得出OE=OF;
(2)先延长EO交CF于点G,通过判定,得出OG=OE,再根据中,,即可得到OE=OF;
(3)根据点P在射线OA上运动,需要分两种情况进行讨论:当点P在线段OA上时,当点P在线段OA延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.
(1)OE=OF.理由如下:
如图1.
∵四边形ABCD是矩形,∴ OA=OC.
∵,,∴.
∵在和中,,∴,∴ OE=OF;
(2)补全图形如图2,OE=OF仍然成立.证明如下:
延长EO交CF于点G.
∵,,∴ AE//CF,∴.
又∵点O为AC的中点,∴ AO=CO.
在和中,,∴,∴ OG=OE,∴中,,∴ OE=OF;
(3)CF=OE+AE或CF=OE-AE.
证明如下:①如图2,当点P在线段OA上时.
∵,,∴,由(2)可得:OF=OG,∴是等边三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.
又∵ CF=GF+CG,∴ CF=OE+AE;
②如图3,当点P在线段OA延长线上时.
∵,,∴,同理可得:是等边三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.
又∵ CF=GF-CG,∴ CF=OE-AE.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 中,对于点 ,我们把点 叫做点 的伴随点。已知点 的伴随点为 ,点的伴随点为 ,点的伴随点为 ,…,这样依次得到点 。若点的坐标为 ,则 的坐标为________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:至少有一组对边相等的四边形为“等对边四边形”.
(1)请写出一个你学过的特殊四边形中是“等对边四边形”的名称;
(2)如图1,四边形ABCD是“等对边四边形”,其中AB=CD,边BA与CD的延长线交于点M,点E、F是对角线AC、BD的中点,若∠M=60°,求证:EFAB;
(3)如图2.在△ABC中,点D、E分别在边AC、AB上,且满足∠DBC=∠ECB∠A,线段CE、BD交于点.
①求证:∠BDC=∠AEC;
②请在图中找到一个“等对边四边形”,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴只有一个交点,且与轴交于点,如图,设它的顶点为B.
(1)求的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线上求点P,使得△是以EF为直角边的直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题.
如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).
(1)点B和点C的坐标分别是________、________.
(2)将△ABC平移后使点C与点D重合,点A、B分别与点E、F重合,画出△DEF.并直接写出E点的坐标 ,F点的坐标 .
(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为___ _____.
(4)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),
B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与X轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com