【题目】已知抛物线与轴只有一个交点,且与轴交于点,如图,设它的顶点为B.
(1)求的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线上求点P,使得△是以EF为直角边的直角三角形?
【答案】(1)m = 2;(2)证明见解析;(3)满足条件的P点的坐标为(, )或(, ).
【解析】试题分析:(1)根据抛物线与x轴只有一个交点可知△的值为0,由此得到一个关于m的一元一次方程,解此方程可得m的值;
(2)根据抛物线的解析式求出顶点坐标,根据A点在y轴上求出A点坐标,再求C点坐标,根据三个点的坐标得出△ABC为等腰直角三角形;
(3)根据抛物线解析式求出E、F的坐标,然后分别讨论以E为直角顶点和以F为直角顶点P的坐标.
试题解析:(1)∵抛物线y=x2-2x+m-1与x轴只有一个交点,
∴△=(-2)2-4×1×(m-1)=0,
解得,m=2;
(2)由(1)知抛物线的解析式为y=x2-2x+1=(x-1)2,易得顶点B(1,0),
当x=0时,y=1,得A(0,1).
由1=x2-2x+1,解得,x=0(舍)或x=2,所以C点坐标为:(2,1).
过C作x轴的垂线,垂足为D,则CD=1,BD=xD-xB=1.
∴在Rt△CDB中,∠CBD=45°,BC=.
同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,AB=.
∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;
(3)由题知,抛物线C′的解析式为y=x2-2x-3,
当x=0时,y=-3;
当y=0时,x=-1或x=3,
∴E(-1,0),F(0,-3),即OE=1,OF=3.
第一种情况:若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M.
∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P1EM=∠EFO,得Rt△EFO∽Rt△P1EM,
则,即EM=3P1M.
∵EM=x1+1,P1M=y1,
∴x1+1=3y1①
由于P1(x1,y1)在抛物线C′上,
则有3(x12-2x1-3)=x1+1,
整理得,3x12-7x1-10=0,解得,
x1=,或x2=-1(舍去)
把x1=代入①中可解得,
y1=.
∴P1(, ).
第二种情况:若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥y轴于N.
同第一种情况,易知Rt△EFO∽Rt△FP2N,
得,即P2N=3FN.
∵P2N=x2,FN=3+y2,
∴x2=3(3+y2)②
由于P2(x2,y2)在抛物线C′上,
则有x2=3(3+x22-2x2-3),
整理得3x22-7x2=0,解得x2=0(舍)或x2=.
把x2=代入②中可解得,
y2=.
∴P2(,).
综上所述,满足条件的P点的坐标为:(, )或(,).
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).
(1)求抛物线的解析式;
(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.
(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点分别在的边上运动(不与点重合),是的平分线,的延长线交角的平分线于点.
(1)若,求的度数.
(2)若,求的度数.
(3)若,请用含的代数式表示的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上.
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】美丽的赤城湖水库是蓬溪县“天蓝水绿山青”的真实写照.如图,赤城湖水库的大坝横截面是一个梯形,坝顶宽CD=4m,坝高3m,斜坡AD的坡度为1:2.5,斜坡BC的坡度为1:1.5,若大坝长200m,求大坝所用的土方是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.
(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;
(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂从2011年起开始投入技改资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表所示:
年度 | 2011 | 2012 | 2013 | 2014 |
投入技改资金/万元 | 2.5 | 3 | 4 | 4.5 |
产品成本/(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请认真分析表中的数据,从你学过的一次函数和反比例函数中确定哪种函数能表示其变化规律,并求出它的表达式;
(2)按照这种变化规律,2015年已投入技改资金5万元.
①预计产品成本每件比2014年降低多少万元?
②如果打算在2015年把每件产品的成本降低到3.2万元,那么还需投入技改资金多少万元?(精确到0.01万元)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1) , ;
(2)请补全频数分布直方图;
(3)若成绩在以上(包括分)的为“优”等,则该校参加这次比赛的名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(-4,0)、B(0,2),点P(a,a).
(1)当a=2时,将△AOB绕点P(a,a)逆时针旋转90°得△DEF,点A的对应点为D,点O的对应点为E,点B的对应点为点F,在平面直角坐标系中画出△DEF,并写出点D的坐标 ;
(2)作线段AB关于P点的中心对称图形(点A、B的对应点分别是G、H),若四边形ABGH是正方形,则a= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com