精英家教网 > 初中数学 > 题目详情

【题目】 如图,点EF分别为正方形ABCD的边BCCD上一点,ACBD交于点O,且∠EAF45°AEAF分别交对角线BD于点MN,则有以下结论:①AOM∽△ADF;②EFBE+DF;③∠AEB=∠AEF=∠ANM;④SAEF2SAMN,以上结论中,正确的个数有( )个.

A. 1B. 2C. 3D. 4

【答案】D

【解析】

如图,把ADF绕点A顺时针旋转90°得到ABH,由旋转的性质得,BH=DFAH=AF,∠BAH=DAF,由已知条件得到∠EAH=EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=AEB,则可求得②正确;

根据三角形的外角的性质得到①正确;

根据相似三角形的判定定理得到OAM∽△DAF,故③正确;

根据相似三角形的性质得到∠AEN=ABD=45°,推出AEN是等腰直角三角形,根据勾股定理得到AEAN,再根据相似三角形的性质得到EFMN,于是得到SAEF=2SAMN.故④正确.

如图,把ADF绕点A顺时针旋转90°得到ABH

由旋转的性质得,BHDFAHAF,∠BAH=∠DAF

∵∠EAF45°

∴∠EAH=∠BAH+BAE=∠DAF+BAE90°﹣∠EAF45°

∴∠EAH=∠EAF45°

AEFAEH

∴△AEF≌△AEHSAS

EHEF

∴∠AEB=∠AEF

BE+BHBE+DFEF

故②正确

∵∠ANM=∠ADB+DAN45°+DAN

AEB90°﹣∠BAE90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+BAH

∴∠ANM=∠AEB

∴∠ANM=∠AEB=∠ANM

故③正确,

ACBD

∴∠AOM=∠ADF90°

∵∠MAO45°﹣∠NAO,∠DAF45°﹣∠NAO

∴△OAM∽△DAF

故①正确

连接NE

∵∠MAN=∠MBE45°,∠AMN=∠BME

∴△AMN∽△BME

∵∠AMB=∠EMN

∴△AMB∽△NME

∴∠AEN=∠ABD45°

∵∠EAN45°

∴∠NAENEA45°

∴△AEN是等腰直角三角形

AE

∵△AMN∽△BMEAFE∽△BME

∴△AMN∽△AFE

SAFE2SAMN

故④正确

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市正大力倡导”垃圾分类“,2015年第一季度某企业按A类垃圾处理费25/吨、B类垃圾处理费16/吨的收费标准,共支付垃圾处理费520.20154月起,收费标准上调为:A类垃圾处理费100/吨,B类垃圾处理费30/.若该企业2015年第二季度需要处理的A类,B类垃圾的数量与第一季度相同,就要多支付垃圾处理费880.

1)该企业第一季度处理的两类垃圾各多少吨?

2)该企业计划第二季度将上述两种垃圾处理总量减少到24吨,且B类垃圾处理量不超过A类垃圾处理量的3倍,该企业第二季度最少需要支付这两种垃圾处理费共多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.现分别任作的内接矩形,设这三个内接矩形的周长分别为,则的值是( )

A. 6B. C. 12D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,且.

1)求抛物线的解析式及顶点的坐标;

2)判断的形状,证明你的结论;

3)点轴上的一个动点,当的值最小时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC=10,D是边BC上一动点(不与B,C重合),∠ADE=B=α,DEAC于点E,cosα= .下列结论:

①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;

③△DCE为直角三角形时,BD为8; ④0<CE≤6.4.

其中正确的结论是____________.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三个完全相同的小球上分别写上-2-12三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为,组成一对数.

1)请用列表或画树状图的方法,表示出数对的所有可能的结果;

2)求直线不经过第一象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在小正方形的边长均为1的方格纸中,有线段和线段,点均在小正方形的顶点上.

(1)在方格纸中画出以为斜边的直角三角形,点E在小正方形的顶点上,且的面积为5

(2)在方格纸中画出以为一边的,点在小正方形的顶点上,的面积为4,射线与射线交于点,且,连接,请直接写出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1.若从中任意摸出一个球,它是蓝球的概率为.

1)求袋中黄球的个数;

2)从袋中一次摸出两个球,请用画树状图或列表格的方法列出所有等可能的结果,并求出摸到两个不同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

同步练习册答案