【题目】如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为_____.
科目:初中数学 来源: 题型:
【题目】(2016重庆市第26题)如图1,二次函数的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD//x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F,当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数沿直线BC平移,平移的距离是t(t≥0),平移后抛物线使点A,点C的对应点分别为点A’,点C’;当△A’C’K是直角三角形时,求t的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60海里,在B处测得C在北偏东45的方向上,A处测得C在北偏西30的方向上,在海岸线AB上有一灯塔D,测得AD=120海里。
(1)(4分)分别求出A与C及B与C的距离AC,BC(结果保留根号)
(2)(5分)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?(参考数据:=1.41,=1.73,=2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016云南省第22题)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式)
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6 cm2,△A′B′C′的周长是△ABC的周长一半.则△ABC的面积等于( )
A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:
⑴填空:
①正四面体的顶点数V= ,面数F= ,棱数E= .
②正六面体的顶点数V= ,面数F= ,棱数E= .
③正八面体的顶点数V= ,面数F= ,棱数E= .
⑵若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:
⑶如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广东省深圳市第23题)如图,抛物线与轴交于A、B两点,且B(1 , 0)。
(1)、求抛物线的解析式和点A的坐标;
(2)、如图1,点P是直线上的动点,当直线平分∠APB时,求点P的坐标;
(3)如图2,已知直线 分别与轴 轴 交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作 轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com