精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB的垂直平分线分别交ABBC于点DE,∠B=30°,BAC=80°,BC+AC=12cm,①求∠CAE的度数;②求△AEC的周长。

【答案】50°;②12cm.

【解析】

①依据AB的垂直平分线分别交ABBC于点DE,即可得出BE=AE,进而得到∠BAE=B=30°,再根据∠CAE=BAC-BAE进行计算即可;

②根据BE=AE,利用BC+AC=12cm,即可求出AEC的周长.

解:①∵AB的垂直平分线分别交ABBC于点DE
BE=AE
∴∠BAE=B=30°
又∵∠BAC=80°
∴∠CAE=BAC-BAE=80°-30°=50°

②由①得BE=AE

∴△AEC的周长= AE+EC+AC =BE+EC+AC =BC+AC=12cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m 到达点B,然后再沿北偏西30°方向走了50m到达目的地C

1)求AC两点之间的距离;

2)确定目的地C在营地A的北偏东多少度方向。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】形如:的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程的解可以看成抛物线与直线轴)的交点的横坐标;也可以看成是抛物线与直线________的交点的横坐标;也可以看成是抛物线________与直线的交点的横坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,∠B90°,连接AC,∠DAC=∠BAC

1)求证:ADDC

2)若∠D120°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣(m+1)x+m

(1)求证:抛物线与x轴一定有交点;

(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1<0<x2,且,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为杨辉三角贾宪三角.杨辉三角两腰上的数都是,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了的展开式(按的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的个数,恰好对应着展开式中的各项系数,第四行的个数,恰好对应着展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:

1)写出的展开式;

2)利用整式的乘法验证你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.

(1)求证:OFDE=OE2OH;

(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简:

(1)sin45°cos60°﹣cos45°sin30°;

(2)5tan30°﹣2(cos60°﹣sin60°);

(3)(tan30°)2005(2sin45°)2004

(4)(2cos45°﹣tan45°)﹣(tan60°+sin30°)0﹣(2sin45°﹣1)1

查看答案和解析>>

同步练习册答案