精英家教网 > 初中数学 > 题目详情

【题目】形如:的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程的解可以看成抛物线与直线轴)的交点的横坐标;也可以看成是抛物线与直线________的交点的横坐标;也可以看成是抛物线________与直线的交点的横坐标;

【答案】

【解析】

一元二次方程x2+x-3=0可变形为x2=-x+3,或者x2-3=-x,故一元二次方程x2+x-3=0可以看成是抛物线y=x2与直线y=-x+3的交点的横坐标;也可以看成是抛物线y=x2-3与直线y=-x的交点的横坐标.

依题意,一元二次方程x2+x-3=0可以看成是抛物线y=x2与直线y=-x+3的交点的横坐标;也可以看成是抛物线y=x2-3与直线y=-x的交点的横坐标.

故本题答案为:-x+3,x2-3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ADAE分别是ABC的中线、高,且AB=4cmAC=3cm,请解答下列问题:

(1)ABDACD面积大小有怎样的关系?并说明理由.

(2)ABDACD周长之差是多少?

(3)AE=2.5cm BC=6cm时,试求ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新泰特产专卖店销售樱桃,其进价为每千克30元,按每千克50元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克,若该专卖店销售这种樱桃想要平均每天获利2240元,请回答:

(1)每千克樱桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们把抛物线y=﹣x(x﹣3)(0≤x≤3)记为C1,它与x轴交于点O,A1将C1绕点A1旋转180°得C2,交x 轴于另一点A2;将C2绕点A2旋转180°得C3,交x 轴于另一点A3;…;如此进行下去,直至得C2016.①C1的对称轴方程是_____;②若点P(6047,m)在抛物线C2016上,则m=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象经过(2,1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】

A.y的最大值小于0      B.当x=0时,y的值大于1

C.当x=1时,y的值大于1  D.当x=3时,y的值小于0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形的边长为4,的中心,.绕点旋转,分别交线段两点,连接,给出下列四个结论:;;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.

(1)建立适当的平面直角坐标系,求抛物线的表达式;

(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB的垂直平分线分别交ABBC于点DE,∠B=30°,BAC=80°,BC+AC=12cm,①求∠CAE的度数;②求△AEC的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.

(1)根据图像分别求出L1,L2的函数关系式.

(2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).

查看答案和解析>>

同步练习册答案