精英家教网 > 初中数学 > 题目详情
如图,E为正方形CD边上一点,连接BE,过点AAFBE,交CD的延长线于点F 的平分线分别交AFAD于点GH

(1)若,求的长度;
(2)证明:
(1)—1   (2)通过证明∠M=∠MBE得 BE=EM=AH+DF从而BE=AH+DF  

试题分析:(1)∵ABCD是正方形
∴∠DAB=∠ABC=∠BCD=∠CDA=90°
∵∠CBE=30°且BG平分∠ABE,
∴∠ABG=∠GBE=30°
∴∠AGB=∠GBE
∴∠ABG=∠AGB
∴AB=AG=      
又∵在Rt△ABE中,∠ABG=30°
∴AH=AB=1     
又∵ABCD是正方形
∴AD=AB
∴DH=—1     
(2)证明:将△ABH绕着点B顺时针旋转90°

∵ABCD是正方形
∴AD=BC,∠ADC=∠C=90°
∴∠ADF=∠C
∵AF∥BE
∴∠F=∠BEC
∴△ADF≌△BCE
∴DF=CE           
又由旋转可知:AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°
∵∠BCD=90°
∴∠BCD+∠BCM=180°
∴点E、C、M在同一直线。 
∴AH+DF="EC+CM=EM"
又∵BG平分∠ABE,
∴∠ABG=∠GBE
又∵∠ABH=∠CBM
∴∠GBE=∠CBM
∴∠GBE+∠CBE=∠CBM+∠CBE
即 ∠GBC=∠MBE 
又∵正方形ABCD中,AD∥BC
∴∠AHB=∠GBC
∴∠GBC=∠M
∴∠M=∠MBE     
∴BE=EM=AH+DF
∴BE=AH+DF       
点评:本题考查正方形、角平分线,旋转,考生对正方形的性质、角平分线的性质,旋转的特征的熟悉是解本题的关键,要求学生对相应的知识掌握
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在四边形中,4,13,12,∠
90°,∠135°, 四边形的面积是  (   )
A.94B.90C.84D.78

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于点H,连接BH.

(1)若DG=2,求DH的长;
(2)求证:BH+DH=CH.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积为1,按上述方法所作的正方形的面积依次为,…..,n为正整数),那么第8个正方形的面积=___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图4×5网格中,每个小正方形的边长为1,在图中找两个格点D和E,使∠ABE=∠ACD=90°,则四边形BCDE的面积为      
     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,∠A=90°,∠B=120°,ADAB=6.在底边AB上有一动点E,满足∠DEQ=120°,EQ交射线DC于点F

(1)求下底DC的长度;
(2)当点EAB的中点时,求线段DF的长度;
(3)请计算射线EF经过点C时,AE的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在四边形中,,且分别是的中点,则          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知长方形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,则DE的长为                  

查看答案和解析>>

同步练习册答案