精英家教网 > 初中数学 > 题目详情

【题目】请仅用无刻度的直尺在下列图1和图2中按要求画菱形.
(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;
(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.

【答案】
(1)解:如图所示:四边形EFGH即为所求的菱形


(2)解:如图所示:四边形AECF即为所求的菱形


【解析】(1)直接利用矩形的性质将其分割进而得出各边中点即可得出答案;(2)利用正方形的性质延长AE,交DC于点N,连接NO并延长NO于点M,连接MC,即可得出F点位置,进而得出答案.
【考点精析】关于本题考查的三角形中位线定理和菱形的判定方法,需要了解连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x﹣交x轴于点A,交y轴于点C,直线y=x﹣5交x轴于点B,在平面内有一点E,其坐标为(4,),连接CB,点K是线段CB的中点,另有两点M,N,其坐标分别为(a,0),(a+1,0).将K点先向左平移 个单位,再向上平移个单位得K′,当以K′,E,M,N四点为顶点的四边形周长最短时,a的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在数轴上有A、B两点,所表示的数分别是n,n+6,A点以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,设运动时间为t.

(1)n=1时,经过tA点表示的数是_______,B点表示的数是______,AB=________;

(2)t为何值时,A、B两点重合;

(3)在上述运动的过程中,若P为线段AB的中点,数轴上点C表示的数是n+10.是否存在t值,使得线段PC=4,若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了丰富学生的课外活动,某校决定购买100个篮球和副羽毛球拍.经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每副羽毛球拍贵25元,两个篮球与三副羽毛球拍的费用正好相等.经洽谈,甲商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球数超过80个,则购买羽毛球拍可打八折.

1)求每个篮球和每副羽毛球拍的价格分别是多少?

2)请用含的代数式分别表示出到甲商店和乙商店购买所花的费用;

3)请你决策:在哪家商店购买划算?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、FAC上,AD=BC,AD//BC,则添加下列哪个条件后,仍无法判定△ADF≌△CBE的是

A. DF=BE B. ∠D=∠B C. AE=CF D. DF//BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy,直线y=x﹣1与y轴交于点A,与双曲线y= 交于点B(m,2)
(1)求点B的坐标及k的值;
(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC,垂足为点D,CE是边AB上的中线,如果CD=BE,B=40°,那么∠BCE=_____度.

查看答案和解析>>

同步练习册答案