分析 (1)连接BD交AC于点O.由平行四边形的性质可知O为BD中点,又因为BG∥AF,进而证明DF=EF.
(2)利用直角三角形的性质和三角形中位线性质定理以及平行四边形的性质即可求出BE的长.
解答 (1)证明:连接BD交AC于点O.
∵四边形ABCD是平行四边形,![]()
∴OB=OD,
∵BG∥AF,
∴DF=EF;
(2)解:∵AC⊥DC,∠ADC=60°,AD=6,
∴AC=4$\sqrt{3}$.
∵OF是△DBE的中位线,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四边形ABCD是平行四边形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=8$\sqrt{3}$.
点评 本题考查了平行四边形的性质、三角形的中位线定理以及在直角三角形中30°所对的直角边是斜边的一半和勾股定理的运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 20 | B. | 32 | C. | 24 | D. | 27 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | ±$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com