【题目】如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点与轴交于点二次函数的图象经过两点,且与轴的负半轴交于点.
求二次函数的解析式及点的坐标.
点是线段上的一动点,动点在直线下方的二次函数图象上.设点的横坐标为.过点作于点求线段的长关于的函数解析式,并求线段的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以为顶点的抛物线交轴于点,,交轴于点.
(1)求抛物线的解析式;
(2)在直线上有一点,使的值最小,求点的坐标;
(3)在轴上是否存在一点,使得以,,为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).
(1)如图1,当点G落在AD边上时,直接写出AG的长为 ;
(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;
(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,学生会随机抽取了20名七、八年级学生(每个年级各10人)进行问卷调查,并把他们的得分绘制成了如下表格,计分采用10分制(得分均取整数)成绩达到6分或6分以上为及格,达到9分及以上为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1
七年级 | 5 | 8 | 8 | 8 | 10 | 10 | 8 | 5 | 5 | |
八年级 | 10 | 6 | 6 | 9 | 4 | 5 | 7 | 10 | 8 |
表2
年级 | 平均数 | 中位数 | 众数 | 方差 | 及格率 | 优秀率 |
七年级 | 7.6 | 8 | 8 | 3.82 | 70% | |
八年级 | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表1中,_____,_____;在表2中,_____,______;
(2)根据表2成绩数据分析,你认为哪个年级的学生对垃圾分类了解更加深入,请说明你的理由;
(3)小明根据表2数据作出如下判断:
①七年级学生成绩的平均数高于八年级,故七年级学生一定比八年级学生优秀;
②被调查对象中,七年级学生的成绩更加稳定;
③学校七年级和八年级共有400人,估计有280人成绩达到优秀;
④七年级不及格人数比八年级多;
对小明的四个结论,随机任选两个,求都是错误的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).
请根据以上信息,解答下列问题:
(1)该汽车交易市场去年共交易二手轿车 辆.
(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)
(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).
(1)求该抛物线的表达式及顶点坐标;
(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;
(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com