精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,且AB4,点C在半圆上,OCAB,垂足为点OP为半圆上任意一点,过P点作PEOC于点E,设OPE的内心为M,连接OMPM.当点P在半圆上从点B运动到点A时,内心M所经过的路径长为_____

【答案】

【解析】

根据三角形内心的性质可求得∠PMO=135°,再由全等三角形的判定和性质可得∠CMO135°,过CMO三点作⊙O′,连OCOO,在优弧CO取点D,连DCDO,在等腰直接三角形中求得OO,从而求得弧OMC,同理可求得弧ONC,从而求得点M所经过的路径.

解:∵△OPE的内心为M

∴∠MOP=∠MOC,∠MPO=∠MPE

∴∠PMO180°﹣∠MPO﹣∠MOP180°(∠EOP+OPE),

PEOC,即∠PEO90°

∴∠PMO180°×(∠EOP+OPE)=180°×180°90°)=135°

如图,连接OC

OPOCOMOM

而∠MOP=∠MOC

∴△OPM≌△OCMSAS),

∴∠CMO=∠PMO135°

所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(弧OMC和弧ONC);

M在扇形BOC内时,

CMO三点作⊙O′,连O′CO′O

在优弧CO取点D,连DCDO

∵∠CMO135°,

∴∠CDO180°135°45°

∴∠CO′O90°,而OA2cm

O′OOC×2

∴弧OMC的长=cm

同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为cm

所以内心M所经过的路径长为πcm

故答案为:πcm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:小明研究了这样一个问题:求使得等式成立的x的个数.小明发现,先将该等式转化为,再通过研究函数的图象与函数的图象(如图)的交点,使问题得到解决.

1)当k1时,使得原等式成立的x的个数为_______

2)当0k1时,使得原等式成立的x的个数为_______

3)当k1时,使得原等式成立的x的个数为_______

参考小明思考问题的方法,解决问题:关于x的不等式只有一个整数解,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点.

求抛物线的函数表达式;

求抛物线的顶点坐标,直接写出当时,x的取值范围;

设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABO中,∠BAO90°AOABBO8,点A的坐标(﹣80),点C在线段AO上以每秒2个单位长度的速度由AO运动,运动时间为t秒,连接BC,过点AADBC,垂足为点E,分别交BO于点F,交y轴于点 D

1)用t表示点D的坐标   

2)如图1,连接CF,当t2时,求证:∠FCO=∠BCA

3)如图2,当BC平分∠ABO时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:过外一点C直径AF,垂足为E,交弦ABD,若,则

判断直线BC的位置关系,并证明;

OA中点,,请直接写出图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为4,圆心角为90°的扇形BACA点逆时针旋转60°,点BC的对应点分别为点DE且点D刚好在上,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

同步练习册答案