精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O于点D,延长BD至点N,使得BN=AM,连接CN,MN.
(1)判断△CMN的形状,并证明你的结论;
(2)求证:CN是⊙O的切线;
(3)若等边△ABC的边长是2,求ADAM的值.

【答案】
(1)解:△CMN为等边三角形.理由如下:

∵△ABC为等边三角形,

∴CB=CA,∠ABC=∠ACB=60°,

在△BCN和△ACM中

∴△BCN≌△ACM,

∴CN=CM,∠BCN=∠ACM,

∴∠ACB+∠ACN=∠ACN+∠MCN,

∴∠MCN=∠ACB=60°,

∴△CMN为等边三角形


(2)证明:连接OC,如图,

∵CA=CB,

=

∴OC⊥AB,

∵∠ABC=∠MCN=60°,

∴AB∥CN,

∴OC⊥CN,

∴CN是⊙O的切线


(3)解:连接CD,如图,

∵∠ADC+∠ABC=180°,∠ACM+∠ACB=180°,

而∠ABC=∠ACB=60°,

∴∠ADC=∠ACM,

而∠DAC=∠CAM,

∴△ACD∽△AMC,

∴AC:AD=AM:AC,

∴ADAM=AC2

∵等边△ABC的边长是2,

∴AC=2,

∴ADDM=4.


【解析】(1)利用等边三角形的性质得到CB=CA,∠ABC=∠ACB=60°,再证明△BCN≌△ACM得到CN=CM,∠BCN=∠ACM,则∠MCN=∠ACB=60°,于是可判断△CMN为等边三角形;(2)连接OC,如图,利用CA=CB得到 = ,则根据垂径定理的推论得到OC⊥AB,再证明AB∥CN,则OC⊥CN,然后根据切线的判定方法可判断CN是⊙O的切线;(3)连接CD,如图,证明△ACD∽△AMC,利用相似比得到ADAM=AC2 , 然后利用等边△ABC的边长是2可得到ADDM的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+1与y轴交于点A1 , 依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得点A1、A2、…,An在直线x+1上,点C1、C2、…,Cn在x轴上,则点Bn的坐标是( )

A.(2n﹣1,2n﹣1
B.(2n﹣1+1,2n﹣1
C.(2n﹣1,2n﹣1)
D.(2n﹣1,n)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点O是△ABC的两条角平分线的交点,

(1)若∠A=30°,则∠BOC的大小是   

(2)若∠A=60°,则∠BOC的大小是   

(3)若∠A=n°,则∠BOC的大小是多少?试用学过的知识说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图长方形MNPQ是菜市民健身广场的平面示意图,它是由6个正方形拼成的长方形,中间最小的正方形A的边长是1,观察图形特点可知长方形相对的两边是相等的(如图中MN=PQ).正方形四边相等.请根据这个等量关系,试计算长方形MNPQ的面积,结果为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DEAB的垂直平分线,交BC于点D,交AB于点E,已知AE=1 cm,ACD的周长为12 cm,则ABC的周长是(  )

A. 13 cm B. 14 cm C. 15 cm D. 16 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班有48名学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去动物园的学生数”的扇形圆心角为60°,则下列说法正确的是( )

A. 想去动物园的学生占全班学生的60% B. 想去动物园的学生有12

C. 想去动物园的学生肯定最多 D. 想去动物园的学生占全班学生的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,抛物线y1=ax2+bx(a≠0),与x轴正半轴交于点A1(2,0),顶点为P1 , △OP1A1为正三角形,现将抛物线y1=ax2+bx(a≠0)沿射线OP1平移,把过点A1时的抛物线记为抛物线y2 , 记抛物线y2与x轴的另一交点为A2;把抛物线y2继续沿射线OP1平移,把过点A2时的抛物线记为抛物线y3 , 记抛物线y3与x轴的另一交点为A3;….;把抛物线y2015继续沿射线OP1平移,把过点A2015时的抛物线记为抛物线y2016 , 记抛物线y2016与x轴的另一交点为A2016 , 顶点为P2016 . 若这2016条抛物线的顶点都在射线OP1上.

(1)①求△OP1A1的面积;②求a,b的值;
(2)求抛物线y2的解析式;
(3)请直接写出点A2016以及点P2016坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD是一张边长为12公分的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中PD=2DQ,PC=RC,且P、Q、
R三点分别在CD、AD、BC上,如图所示.

(1)当皮雕师傅切下△PDQ时,若DQ长度为x公分,请你以x表示此时△PDQ的面积.
(2)承(1),当x的值为多少时,五边形PQABR的面积最大?请完整说明你的理由并求出答案.

查看答案和解析>>

同步练习册答案