【题目】如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.
(1)若∠A=30°,求证:PA=3PB;
(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.
【答案】(1)见解析;(2)推理过程见解析.
【解析】
(1)由直径所对的圆周角是直角,以及∠A=30°可得∠ABC=60°,从而可判断△OBC是等边三角形,得到∠COB=60°,再结合切线的性质可求得∠P=30°,继而可推得PB=OB,再根据AB=2OB,即可确定AP与BP的数量关系;
(2)连接OC,由圆周角定理以及切线的性质结合等角对等边可以推导得出∠BCP=∠A,再由三角形内角和定理即可确定出两角的关系.
(1)连接OC,
∵AB是直径,
∴∠ACB=90°,
又∵∠A=30°,
∴∠ABC=90°-30°=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴OB=BC=OC,∠COB=60°,
∵PC是⊙O的切线,OC是半径,
∴∠OCP=90°,
∴∠P=90°-∠BOC=30°,
∴PO=2OC,
∴PB=OB,
∵AB=2OB,
∴AP=AB+PB=3PB;
(2)如图,连接OC,
∵AB是直径,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵PC是⊙O的切线,OC是半径,
∴∠OCP=90°,即∠BCP+∠BCO=90°,
∴∠BCP=∠ACO,
∵OA=OC,
∴∠A=∠ACO,
∴∠BCP=∠A,
∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,
∴2∠BCP=180°﹣∠P,
∴∠BCP=(90°﹣∠P).
科目:初中数学 来源: 题型:
【题目】已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.
(1)求抛物线的解析式和直线的解析式.
(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.
(1)求函数和y=kx+b的解析式;
(2)结合图象直接写出不等式组0<<kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)
(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?
(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号 | 一 | 二 | 三 | 四 | 五 |
人数 | 15 | 20 | 10 |
已知前面两个小组的人数之比是.
解答下列问题:
(1) .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):
3 | 2.5 | 0.6 | 1.5 | 1 | 2 | 2 | 3.3 | 2.5 | 1.8 |
2.5 | 2.2 | 3.5 | 4 | 1.5 | 2.5 | 3.1 | 2.8 | 3.3 | 2.4 |
整理上面的数据,得到表格如下:
网上学习时间(时) | ||||
人数 | 2 | 5 | 8 | 5 |
样本数据的平均数、中位数、众数如下表所示:
统计量 | 平均数 | 中位数 | 众数 |
数值 | 2.4 |
根据以上信息,解答下列问题:
(1)上表中的中位数的值为 ,众数的值为 .
(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.
(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,点是边上的一个动点(点与点不重合),连接,过点作于点,交于点.
(1)求证:;
(2)如图2,当点运动到中点时,连接,求证:;
(3)如图3,在(2)的条件下,过点作于点,分别交于点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com