精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数y=
(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;
(2)如图,反比例函数y= (1≤x≤4)的图象记为曲线C1 , 将C1向左平移2个单位长度,得曲线C2 , 请在图中画出C2 , 并直接写出C1平移至C2处所扫过的面积.

【答案】
(1)解:解 得kx2+4x﹣4=0,

∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,

∴△=16+16k=0,

∴k=﹣1


(2)解:如图所示,C1平移至C2处所扫过的面积=2×3=6.


【解析】本题考查了反比例函数与一次函数的交点问题,平移的性质,一元二次方程根与系数的关系,知道反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点时,△=0是解题的关键.(1)解方程组得到kx2+4x﹣4=0,由反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,得到△=16+4k=0,求得k=﹣4;(2)根据平移的性质即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.

(1)求证:△ABE≌△FCE;
(2)连接AC、BF,若AE= BC,求证:四边形ABFC为矩形;
(3)在(2)条件下,直接写出当△ABC再满足时,四边形ABFC为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(

A.2
B.
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.

(1)求圆的半径及圆心P的坐标;
(2)M为劣弧 的中点,求证:AM是∠OAB的平分线;
(3)连接BM并延长交y轴于点N,求N,M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:

购买商品A的数量(个)

购买商品B的数量(个)

购买总费用(元)

第一次购物

4

3

93

第二次购物

6

6

162

若小丽需要购买3个商品A和2个商品B,则她要花费( )
A.64元
B.65元
C.66元
D.67元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:

(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;
(2)本次抽样调查中,学习时间的中位数落在哪个等级内?
(3)表示B等级的扇形圆心角α的度数是多少?
(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:

(1)本次接受问卷调查的学生总人数是
(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为 , m的值为
(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.

(1)求证:AC平分∠DAB;
(2)求证:△PCE是等腰三角形.

查看答案和解析>>

同步练习册答案