【题目】综合与实践:再探平行四边形的性质
问题情境:
学完平行四边形的有关知识后,同学们开展了再探平行四边形性质的数学活动,以下是“希望小组”得到的一个性质:
如图1,已知平行四边形中,,于点,垂直于点,则.
问题解决:
(1)如图2,当时,还成立吗?证明你发现的结论;
(2)如图2,连接和,若.求的度数;
(3)如图3,若,,点是射线上一点,且.则_________.(用含的三角函数表示)
【答案】(1)还成立,证明见解析;(2);(3).
【解析】
(1)先根据平行四边形的性质、平行线的性质可得,再根据四边形的内角和可得,然后根据等量代换即可得证;
(2)由(1)可知,从而可得出四点共圆,再根据圆周角定理即可得;
(3)如图(见解析),如图,过点A作于点E,先根据菱形的判定与性质得出,,,再根据角的和差、等量代换可得,然后根据等腰三角形的判定与性质可得,最后在中,利用余弦三角函数的定义即可得.
(1)还成立,证明如下:
∵四边形是平行四边形
∴
∴
在四边形中,,,即
∴
∴;
(2)由(1)知,
则如图,四点共圆
由圆周角定理得:;
(3)如图,过点A作于点E
四边形ABCD是平行四边形,且
平行四边形ABCD是菱形
,,
又
是等腰三角形
(等腰三角形的三线合一)
则在中,
即
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,对角线AC与BD相交于点O,AE,DF分别是∠OAD与∠ODC的平分线,AE的延长线与DF相交于点G,则下列结论:①AG⊥DF;②EF∥AB;③AB=AF;④AB=2EF.其中正确的结论是( )
A.①②B.③④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(,,是常数,)的自变量x与函数值y的部分对应值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且当时,与其对应的函数值.有下列结论:①;②3是关于的方程的一个根;③.其中,正确结论的个数是( )
A.0B.1C.2/span>D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)
【答案】①②③④.
【解析】
试题分析:①由△ABC是等边三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等边三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等边三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正确.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四边形ABDF是平行四边形,所以DF=AB=BC,故②正确.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正确.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正确.
考点:三角形综合题.
【题型】填空题
【结束】
19
【题目】先化简,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2+bx+2的图象交x轴于点A(﹣2,0),B(3,0),交y轴于点C,P是第一象限内二次函数图象上的动点.
(1)求这个二次函数的表达式;
(2)连接PB,PC,PO,若S△POC=S△PBC,求点P的坐标;
(3)如图2.连接AP,交直线BC于点D,当点D是线段BC的三等分点时,求tan∠ADC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“新冠肺炎”肆虐时,无数抗疫英雄涌现,七年级(2)班老师为让同学们更深人地了解抗疫英雄钟南山、李兰娟、李文亮、张文宏(依次记为A、B、C、D)的事迹,设计了如下活动:取四张完全相同的卡片.分别写上A、B、C、D)四个标号,然后背面朝上放置在水平桌面上,搅匀后每个同学从中随机抽取一张卡片,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相对应抗疫英雄的资料,并做成小报.
(1)求小欢同学抽到的卡片上是钟南山的概率;
(2)请用列表法或画树状图的方法,求小平和小安两位同学抽到的卡片上是不同英雄的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com