【题目】阅读下面材料:
小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出交点与垂足之间的数值.
请回答:
(1)如图1,A、B、C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;
(2)如图2,线段AB与CD交于点O,小明在点阵中找到了点E,连接AE.恰好满足AE⊥CD于E,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.
请你帮小明计算:OC= OF= ;
参考小明思考问题的方法,解决问题:
(3)如图3,线段AB与CD交于点O.在点阵中找到点E,连接AE,满足AE⊥CD于F.计算: OC= ,OF= .
【答案】(1)详见解析;(2),;(3),.
【解析】
(1)利用数形结合的思想解决问题即可.
(2)利用相似三角形的性质解决问题即可.
(3)构造相似三角形解决问题即可.
(1)如图线段CD即为所求.
(2)连接AC,BD.
由题意AC=2,DB=3,CD==2,
∵AC∥BD,
∴△ACO∽△BDO,
∴,
∴OC=CD=,
∵AC∥DE,
∴△ACF∽△EDF,
∴=1,
∴DF=CF=,
∴OF=CF﹣OC=﹣=.
故答案为,.
(3)如图3中,线段AE即为所求.
连接BC,作AM∥BC交CD于M.
由题意:BC=1,AM=2.5,CD=2,DF=CF=,CM=,
∵BC∥AM,
∴△BOC∽△AOM,
∴,
∴OC=CM=.
∴OF=CF﹣OC==.
故答案为,.
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,在正多边形A1A2A3…An的边A2A3上任取一不与点A2重合的点B2,并以线段A1B2为边在线段A1A2的上方作以正多边形A1B2B3…Bn,把正多边形A1B2B3…Bn叫正多边形A1A2…An的准位似图形,点A3称为准位似中心.
特例论证:(1)如图2已知正三角形A1A2A3的准位似图形为正三角形A1B2B3,试证明:随着点B2的运动,∠B3A3A1的大小始终不变.
数学思考:(2)如图3已知正方形A1A2A3A4的准位似图形为正方形A1B2B3B4,随着点B2的运动,∠B3A3A4的大小始终不变?若不变,请求出∠B3A3A4的大小;若改变,请说明理由.
归纳猜想:(3)在图(1)的情况下:①试猜想∠B3A3A4的大小是否会发生改变?若不改变,请用含n的代数式表示出∠B3A3A4的大小(直接写出结果);若改变,请说明理由.②∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1= (用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)点P为线段BC上方抛物线上(不与B、C重合)的一动点,连接PC、PB,当△PBC面积最大时,在y轴找点D,使得PD﹣OD的值最小时,求这个最小值.
(2)如图2,抛物线对称轴与x轴交于点K,与线段BC交于点M,在对称轴上取一点R,使得KR=12(点R在第一象限),连接BR.已知点N为线段BR上一动点,连接MN,将△BMN沿MN翻折到△B'MN.当△B'MN与△BMR重叠部分(如图中的△MNQ)为直角三角形时,直接写出此时点B'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:
(1)该商场每天售出衬衫 件(用含的代数式表示);
(2)求的值为多少时,商场平均每天获利1050元?
(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,
①作射线OP;
②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;
③连接并延长BA与⊙A交于点C;
④作直线PC;
则直线PC即为所求.
根据小元设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:∵ BC是⊙A的直径,
∴∠BPC=90°(____________)(填推理的依据).
∴OP⊥PC.
又∵OP是⊙O的半径,
∴PC是⊙O的切线(____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)若BC=4,求AG的长;
(2)连接BF,求证:AB=FB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com