【题目】如图,AB为⊙O的直径,⊙O过AC的中点D,DE为⊙O的切线.
(1)求证:DE⊥BC;
(2)如果DE=2,tanC= ,求⊙O的直径.
【答案】
(1)
证明:连结OD,如图,
∵D为AC的中点,O为AB的中点,
∴OD为△ABC的中位线,
∴OD∥BC,
∵DE为⊙O的切线,
∴DE⊥OD,
∴DE⊥BC
(2)
解:连结BD,如图,
∵AB为直径,
∴∠ADB=90°,
∴∠BDE+∠CDE=90°,
而∠CDE+∠C=90°,
∴∠C=∠BDE,
在Rt△CDE中,∵tanC= = ,
∴CE=2DE=4,
在Rt△BDE中,∵tan∠BDE= = ,
∴BE= DE=1,
∴BC=BE+CE=5,
∵OD为△ABC的中位线,
∴OD= BC,
∴AB=BC=5,
即⊙O的直径为5.
【解析】(1)证明:连结OD,如图,先证明OD为△ABC的中位线得到OD∥BC,再根据切线的性质得到DE⊥OD,然后根据平行线的性质可判断DE⊥BC;(2)连结BD,如图,先根据圆周角定理得到∠ADB=90°,再利用等角的余角相等得到∠C=∠BDE,接着根据正切的定义在Rt△CDE中计算出CE=2DE=4,在Rt△BDE中计算出BE= DE=1,则BC=5,然后利用OD为△ABC的中位线可求出OD,从而得到圆的直径.
【考点精析】利用切线的性质定理对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:
【题目】如图,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A,B,O三点,点C为 上的一点(不与O、A两点重合),连接OC,AC,则cosC的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.
(1)求过点B′的反比例函数解析式;
(2)求线段CC′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出△A1B1C1 , 使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2 , 并直接写出点B旋转到点B2所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E
(1)若AC=OD,求a、b的值。
(2)若BC∥AE,求BC的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB
(2)若点D在∠BAC的平分线上,求CP的长。
(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com