精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,ACBC,∠ACB90°,点DE分别在ACBC上,且CDCE

1)如图1,求证:∠CAE=∠CBD

2)如图2FBD的中点,求证:AECF

【答案】(1)见解析;(2)见解析

【解析】

1)根据SAS直接判断出ACE≌△BCD即可得出结论;

2)先判断出∠BCF=CBF,进而得出∠BCF=CAE,即可得出结论.

证明:(1)在ACEBCD中,

∴△ACE≌△BCDSAS),

∴∠CAE=∠CBD

2)如图2,记AECF的交点为M

RtBCD中,点FBD的中点,

CFBF

∴∠BCF=∠CBF

由(1)知,∠CAE=∠CBD

∴∠BCF=∠CAE

∴∠CAE+ACF=∠BCF+ACF=∠ACB90°

∴∠AMC90°

AECF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:

①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且在同一条直线上,则的长为(

A. 3 B. C. 4 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点边上一动点,于点于点,连结,点的中点,则的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为3的等边ABCAB边上任取一点D,作DFACACF,在BC的延长线上截取CEAD,连接DEACG,则FG的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实党中央长江大保护新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为20cm,ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点PPQBD,与AC相交于点Q,设运动时间为t秒,0<t<5.

(1)设四边形PQCB的面积为S,求St的关系式;

(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?

(3)直线PNAC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A05),B120),在y轴负半轴上取点E,使OAEO,作∠CEF=∠AEB,直线COBA的延长线于点D

1)根据题意,可求得OE   

2)求证:ADO≌△ECO

3)动点PE出发沿EOB路线运动速度为每秒1个单位,到B点处停止运动;动点QB出发沿BOE运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PMCD于点MQNCD于点N.问两动点运动多长时间OPMOQN全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=x2x3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D

(1)求出点A,B,D的坐标;

(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O,B.首尾顺次连接点O、B、D、C构成四边形OBDC,请求出四边形OBDC的周长最小值.

(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.

查看答案和解析>>

同步练习册答案