【题目】在平面直角坐标系中(如图),已知抛物线的图象经过点、,设它与轴的另一个交点为(点在点的左侧),且的面积是3.
(1)求该抛物线的表达式;
(2)求的正切值;
(3)若抛物线与轴交于点,直线交轴于点,点在射线上,当与相似时,求点的坐标.
【答案】(1);(2);(3)或
【解析】
(1)设A(m,0),由△ABD的面积是3可求得m=2,再利用待定系数法求解可得;
(2)作DF⊥x轴,BF⊥AD,由A,B,D坐标知DF=AF=3,据此可求得,∠DAF=45°,继而可得,,再依据正切函数的定义求解可得;
(3)先求出直线AD解析式为y=x-2,直线BD解析式为y=3x-12,直线CD解析式为y=-x+8,①△ADB∽△APE时BD∥PE,此条件下求得PE解析式,连接直线PE和直线AD解析式所得方程组,解之求得点P坐标;②△ADB∽△AEP时∠ADB=∠AEP,依据求解可得.
解:(1)设,
则,
由的面积是3知,
解得,
∴,
设抛物线解析式为,
将代入得:,解得,
∴;
(2)如图1,过点作轴于点,
∵,,,
∴,,
则,,
过点作于,
则,
∴,
∴;
(3)如图2,
由,得直线解析式为,
由,可得直线解析式为,
由,可得直线解析式为,
当时,,解得,
∴,
①若,则,
∴,
设所在直线解析式为,
将点代入得,解得,
∴直线解析式为,
由得,
∴此时点;
②若,则,
∴,
设,过点作于点,
则,,
∴,
由求得,
∴;
综上,或.
科目:初中数学 来源: 题型:
【题目】已知二次函数解析式为y=2x2﹣4x﹣6.
(1)写出抛物线的开口方向,顶点M坐标,对称轴,最值;
(2)求抛物线与x轴交点A,B与y轴的交点C的坐标;
(3)作出函数的图象;
(4)观察图象:x为何值时,y随x的增大而增大;
(5)观察图象:当x何值时,y>0;当x何值时,y=0;当x何值时,y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为,与轴交于点,与轴交于,两点(点在点的左侧)。
(1)求抛物线的解析式;
(2)连接,,,试证明为直角三角形;
(3)若点在抛物线上,轴于点,以、、为顶点的三角形与相似,试求出所有满足条件的点的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(4,0),B为第一象限内一点,且OB⊥AB,OB=2.
(1)如图①,求点B的坐标;
(2)如图②,将△OAB沿x轴向右平移得到△O′A′B′,设OO′=m,其中0<m<4,连接BO′,AB与O′B′交于点C.
①试用含m的式子表示△BCO′的面积S,并求出S的最大值;
②当△BCO′为等腰三角形时,求点C的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日﹣20日),小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是边长为4的等边三角形,点D是射线BC上的动点,将AD绕点A逆时针方向旋转得到AE,连接DE.
(1).如图,猜想是_______三角形;(直接写出结果)
(2).如图,猜想线段CA、CE、CD之间的数量关系,并证明你的结论;
(3).①当BD=___________时,;(直接写出结果)
②点D在运动过程中,的周长是否存在最小值?若存在.请直接写出周长的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( )
A. B. C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.
(1)求抛物线的表达式及点D的坐标;
(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;
(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com