精英家教网 > 初中数学 > 题目详情
如图1,∠AOB=α,∠COD=β,OM,ON分别是∠AOC,∠BOD的角平分线.
(1)若∠AOB=50°,∠COD=30°,当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图2),则∠MON的大小为
 

(2)在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时(如图3),求∠MON的大小并说明理由;
(3)在∠COD绕点O逆时针旋转过程中,∠MON=
 
.(用含α,β的式子表示).
考点:角的计算,角平分线的定义
专题:
分析:(1)根据角平分线的定义可以求得∠MON=
1
2
(∠AOB+∠BOD);
(2)根据图示可以求得:∠BOD=∠BOC+∠COD=40°.然后结合角平分线的定义推知∠BON=
1
2
∠BOD,∠COM=
1
2
∠AOC.则∠MON=∠MOB+∠BON=40°;
(3)根据(1)、(2)的解题思路得到:
解答:解:(1)如图2,∵OM,ON分别是∠AOC,∠BOD的角平分线,
∴∠BOM=
1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=
1
2
(∠AOB+∠BOD).
又∵∠AOB=50°,∠COD=30°,
∴∠MON=
1
2
(∠AOB+∠BOD)=
1
2
×(50°+30°)=40°.
故答案是:40°;

(2)如图3,∵∠BOD=∠BOC+∠COD=10°+30°=40°,ON平分∠BOD,
∴∠BON=
1
2
∠BOD=
1
2
×40°=20°.
∵∠AOC=∠BOC+∠AOB=10°+50°=60°,OM平分∠AOC,
∴∠COM=
1
2
∠AOC=
1
2
×60°=30°.
∴∠BOM=∠COM-∠BOC=30°-10°=20°.
∴∠MON=∠MOB+∠BON=20°+20°=40°;

(3)∵OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β,
∴∠MON=
1
2
α+
1
2
β=
1
2
(α+β);
同理,当∠AOB是钝角时,∠MON=180°
1
2
(α+β);
故答案是:
α+β
2
或180°-
α+β
2
点评:此题主要考查了角的计算,正确根据角平分线的性质得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

抛物线y=x2-2x+3的顶点坐标是(  )
A、(1,2)
B、(1,-2)
C、(-1,2)
D、(-1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

小英在计算一个多项式与2x2-3x+7的差时,因误以为是加上2x2-3x+7而得到答案5x2+2x+4,求这个问题的正确答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(-2)2-|-8|+3-2×(-
1
2
).

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)1-5-(-7)
(2)-12×(
4
3
-
3
4
+
5
6

查看答案和解析>>

科目:初中数学 来源: 题型:

想象一下,将如图的盒子展开成为一个十字型图形,展开后得到的图形是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的个数为(  )
①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=
2
11
∠BOD.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)尺规作图(不写作法,保留作图痕迹)已知:如图1,线段m,n.求作:线段AB=m+2n.
(2)如图2所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.

则自然数2014所在的行数是
 

查看答案和解析>>

同步练习册答案