精英家教网 > 初中数学 > 题目详情

【题目】已知关于的一元二次方程

(1)若方程有实数根,求实数的取值范围

(2)若方程两实数根分别为,且满足,求实数的值

【答案】(1)m≥-1;(2)m=1.

【解析】

(1)根据判别式的意义得到△=[2(m+1)]2-4(m2-1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=-(2m+1),x1x2=m2-1,再利用完全平方公式变形得到(x1+x22-3x1x2-16=0,则[-2(m+1)]2-3(m2-1)-16=0,解方程得m=-9m=1,然后利用m的取值范围确定满足条件的m的值即可.

(1)由题意有△=[2(m+1)]2-4(m2-1)≥0,

整理得8m+8≥0,

解得m≥-1,

∴实数m的取值范围是m≥-1;

(2)由两根关系,得x1+x2=-(2m+1),x1x2=m2-1,

(x1-x22=16-x1x2,

(x1+x22-3x1x2-16=0,

∴[-2(m+1)]2-3(m2-1)-16=0,

∴m2+8m-9=0,

解得m=-9m=1,

∵m≥-1,

∴m=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案:

4个图案中有白色纸片________块,第n个图案中有白色纸片________块。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】圆材埋壁是我国著名的数学著作《九章算术》中的一个问题,今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现代的数学语言表达是:如图,CD是⊙O的直径,弦ABCD,垂足为ECE = 1寸,AB = 1尺,求直径的长”. 依题意,CD长为(

A. B. 13 C. 25 D. 26

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣(其中m>0)与x轴分别交于A,B两点(AB的右侧),与y轴交于点c.

(1)求AOC的周长,(用含m的代数式表示)

(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PCPA,求tanAPO的值及用含m的代数式表示点P的坐标;

(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与抛物线顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤及不等式2n﹣恒成立,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,对角线ACBD相交于点OECD中点,连结OE.过点CCFBD交线段OE的延长线于点F,连结DF.求证:

(1)ODE≌△FCE

(2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的

俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.

求点H到桥左端点P的距离;

若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题)如图1,在RtABC中,∠ACB90°ACBC,过点C作直线l平行于AB.∠EDF90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DFAC交于点P,研究DPDB的数量关系.

(探究发现)(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DPDB,请写出证明过程;

(数学思考)(2)如图3,若点PAC上的任意一点(不含端点AC),受(1)的启发,这个小组过点DDGCDBC于点G,就可以证明DPDB,请完成证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中, AB=11 AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 交于点 D ,过点 D 分别作 DEAB DFAC ,垂足分别为 E F ,则 BE 的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在小明、小红两名同学中选拔一人参加2018年张家界市“经典诗词朗诵”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:

小明:80,85,82,85,83 小红:88,79,90,81,72.

回答下列问题:

(1)求小明和小红测试的平均成绩;

(2)求小明和小红五次测试成绩的方差.

查看答案和解析>>

同步练习册答案