分析 (1)由矩形的性质可知AD∥BC,从而得到∠FAC=∠ACB,由翻折的性质可知∠ACB=∠ACF,于是得到∠FAC=∠FCA,故此可得到△AFC为等腰三角形;
(2)先依据勾股定理求得AC=5,由翻折的性质可知BE=EF,AF=AB=3,可求得FC=2,设EC=x,则BE=EF=4-x,最后在△EFC中由勾股定理可求得EC的长.
解答 解:(1)∵四边形ABCD为矩形,
∴AD∥BC.
∴∠FAC=∠ACB.
由翻折的性质可知;∠ACB=∠ACF,
∴∠FAC=∠FCA.
∴AF=FC.
∴△AFC是等腰三角形.
(2)在Rt△ABC中,由勾股定理得:AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5.
∵由翻折的性质可知:BE=EF,AF=AB=3.
∴FC=2,设EC=x,则BE=EF=4-x.
在Rt△EFC中,由勾股定理可知;EF2+FC2=EC2,即(x-4)2+22=x2.
解得:x=2.5.
∴CE=2.5.
点评 本题主要考查的是翻折的性质、等腰三角形的判定、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2种 | B. | 3种 | C. | 4种 | D. | 5种 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2n+3 | B. | 3n+2 | C. | 3n+4 | D. | 3n+5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com